
A modeling framework for software architecture
specification and validation

Nicolas Gobillot, Charles Lesire, David Doose
firstame.lastname@onera.fr

October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Introduction

Robotic system
A robotic system has to enforce some properties:
For example the safety about the environment

I Software architecture: functional chain analysis
Do not collide into the environment.

I Deployment: contract respect analysis
Take into account the intrinsic parameters of the robot.

I Software functional analysis
Obstacle avoidance or emergency stop guarantee.

I Real-time: schedulability analysis
The actions are done in a finite and known time.

Introduction MAUVE Software execution Software analysis Conclusion

Introduction

Usual practices:
When we design complex architectures, we often use component or
task-based software but sometimes it is not enough to obtain a
safe robot behaviour.

3 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Introduction

Component-based modular architecture
I Components
I Activity
I Architecture: links the

components
I Allocated onto the

Operating System tasks
through the middleware

I Executed on a hardware
platform

Architecture
Components

Task Task
Operating
System

Hardware

Middleware

4 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Introduction

Solution:
Refine the component model (MAUVE DSL) to smaller parts in
order to refine the analysis (MAUVE tools).

5 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Introduction

The MAUVE DSL
MAUVE is a modelling framework for specifying, analysing and
generating component-based robotic architectures.

Why a new framework ?
Safety concerns are primordial to autonomous robots. Many
existing DSLs can be found but none provides analysis tools:

I precise timing analysis
I contract checking at architecture level

6 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

MAUVE DSL elements

I codels: program functions
I components: shell and core
I architecture: component organisation
I deployment: architecture instantiation

Mauve DSL

Codel
specification

Component
model

Architecture
specification

Deployment
specification

Codel
implantation

WCET

Runtime
deployment:

Orocos
Analysis

7 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

MAUVE DSL elements Components

Codels
I Elementary Code: the elementary functions that defines a

specific functionality
I Separation of concerns: codels are independent of the model

and the middleware

codel Detect (img: Img): Pose
codel Track (img: Img): Pose

8 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

MAUVE DSL elements Components

Shell
I Properties: to parametrize

the component
I Ports/operations: to

communicate with other
components

shell TrackingShell {
input port image_port : image_type
output port position_port :

position_type
property cameraType : string

}

Core
I State-Machine
I Codel call

core TrackingCore (TrackingShell) {
update StateMachine TrackingSM

}

StateMachine TrackingSM {
initial state Initialize {

transition then { start (); }
select Detect

}
state Detect {

run {
detect ();

}
transition if (condition ())

select Track
transition if (condition ()) then

{ stop (); } select Cleanup
}
state ...

}

9 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

MAUVE DSL elements Components

Shell
I Properties: to parametrize

the component
I Ports/operations: to

communicate with other
components

shell TrackingShell {
input port image_port : image_type
output port position_port :

position_type
property cameraType : string

}

Core
I State-Machine
I Codel call

core TrackingCore (TrackingShell) {
update StateMachine TrackingSM

}

StateMachine TrackingSM {
initial state Initialize {

transition then { start (); }
select Detect

}
state Detect {

run {
detect ();

}
transition if (condition ())

select Track
transition if (condition ()) then

{ stop (); } select Cleanup
}
state ...

}

9 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

MAUVE DSL elements

Architecture
I Component instantiation
I Connection between components

architecture Architecture {
instance camera : Camera
instance tracking : Tracking

connection camera . image_port -> tracking .
image_port

}

Laser

SLAM

Navigation

Guidance

Control

Robot

Camera

Detection
and

Tracking

image stream scan

scanobject position map

path

relative speeds

actuator commands odometry

10 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Software execution Deployment

The deployment is target-specific
It depends on

I the hardware: CPU architecture
I the middleware: Orocos (ROS, bare C++, bare Scala)

to generate the executable code from the models.

And needs activities to be defined for every component

I Period
I Priority
I Deadline
I Affinity

deployment {
codel command = 12..16
activity robot {

priority = 0
period = 100
deadline = 100

}
}

11 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Software execution Deployment

The deployment is target-specific
It depends on

I the hardware: CPU architecture
I the middleware: Orocos (ROS, bare C++, bare Scala)

to generate the executable code from the models.
And needs activities to be defined for every component

I Period
I Priority
I Deadline
I Affinity

deployment {
codel command = 12..16
activity robot {

priority = 0
period = 100
deadline = 100

}
}

11 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Summary

On-line tools: https://forge.onera.fr/projects/mauve

On this website you can find a wiki with useful tips and a tutorial,
documents related to the MAUVE project and the lastest releases
of the MAUVE DSL.
MAUVE is available under GPL licence.

Work in progress
Contracts for formal analysis are in the DSL but not yet parsed.
Generator:

I other middlewares: ROS, bare C++, bare Scala.
I traces for execution analysis

12 MAUVE – Nicolas Gobillot – October 21 2014

https://forge.onera.fr/projects/mauve

Introduction MAUVE Software execution Software analysis Conclusion

Software analysis Real-time analysis

Task model
I One task per component
I The “classical” method using the task’s execution time is not

precise enough
I MAUVE uses the task model to compute an accurate

component execution time

demand

period
00 1 2 3 4

10
20
30
40
50
60
70
80
90
100
110
120 “classical” method

Mauve

13 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Software analysis Real-time analysis

I Use the ports and the operations of the components
I Find a Periodic State-Machine (PSM) from the state-machine

and the component’s interface
I Generate execution traces from the PSM
I Adapt the usual fixed point algorithms to use the traces:

R0
i = T +

i (0)

Rn+1
i =

∑
j≤hp(i)

T +
j (Rn

i) + T +
i (0)

I Compute the Worst Case Response Time (WCRT) for all the
components

I A component is schedulable if its response time is lesser than
its deadline.

I The architecture is schedulable if all its components are
schedulable.

14 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Software analysis Results

Table and execution timelines from the same architecture,
assuming the tracking component is monolithic and taking into
account its state-machine.

component prio. WCET WCRT WCRT+ period/deadline
robot 0 16 16 16 100
control 1 3 19 19 100
guidance 2 12 31 31 100
laser 3 22 53 53 150
slam 4 30 83 83 150
camera 5 10 93 93 250
tracking 6 30 237 237 250
navigation 7 30 307 297 300

robot t

control t

guidance t

laser t

slam t

camera
t

tracking t

navigation
t

tracking t

navigation
t

15 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Summary

On-line tools: https://forge.onera.fr/projects/mauve

On this website you can find a wiki with useful tips and a tutorial,
documents related to the MAUVE project and the lastest releases
of the MAUVE DSL.
MAUVE is available under GPL licence.

Work in progress
Extract probabilistic timings from traces of the components to
compute probabilistic execution times.
Contract checking (with Tina tool by generating Petri nets)

16 MAUVE – Nicolas Gobillot – October 21 2014

https://forge.onera.fr/projects/mauve

Introduction MAUVE Software execution Software analysis Conclusion

Conclusion

The MAUVE toolchain
allows:

I High level
architectures to low
level component’s
state-machine
specification

I Target specific
parameters definition

I Real-time analysis
I Code generation

Work in progress:
I Contracts for formal analysis are in

the DSL but not yet parsed.
I Generator:

I other middlewares: ROS, bare
C++, bare Scala.

I traces for execution analysis
I Extract probabilistic timings from

traces of the components to
compute probabilistic execution
times.

I Contract checking (with Tina tool
by generating Petri nets)

17 MAUVE – Nicolas Gobillot – October 21 2014

Introduction MAUVE Software execution Software analysis Conclusion

Questions

Try it by yourself: https://forge.onera.fr/projects/mauve

18 MAUVE – Nicolas Gobillot – October 21 2014

https://forge.onera.fr/projects/mauve

	Introduction
	MAUVE
	Software execution
	Software analysis
	Conclusion

