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Abstract. Integrating robotic systems into our everyday life needs that
we prove that they will not endanger people, i.e. that they will behave
correctly with respect to some safety rules. In this paper, we propose
a validation toolchain based on a Domain Specific Language. This DSL
allows to model the software architecture of a robot using a component-
based approach. From these models, we provide tools to generate deploy-
able components, as well as a two-step validation phase. This validation
first performs a real-time analysis of the component architecture, leading
to an evaluation of the software architecture schedulability. Then we can
check the validity of some behavioral property on the components.

1 Introduction

Nowadays, computer-based systems occupy an increasing place in our everyday
or professional life. Robots for instance were absent of our houses in the 80’s
but today tasks performed by such machines are increasing. In the early days,
only simple tasks were given to robots due to different limitations: robots were
mechanically limited by their heavy materials, their sensors and actuators were
big and inaccurate and their processors were slow (HERO1 or PUMA2). Thanks
to miniaturisation, mechanical parts are lighter, electronic circuits are smaller
and processors are powerful enough to perform complex tasks (Da Vinci Surgical
System3 or Curiosity4). To make these robots usable in our everyday life, we need
to ensure that they respect some safety rules, especially regarding their damaging
capabilities. Safety has been considered regarding several aspects of robotics:

– collision avoidance, adapting the robot movements in presence of obstacles
(e.g., [14] generates safe velocity bounds based on environment geometry;
[17] conceives a mechanical system able to detect contact at an early stage);

– human interaction, where human behaviors are anticipated to avoid collisions
while interacting with people (e.g., [24] in manufacturing places, [29] that
tracks pedestrian behaviors);

1 http://www.hero-1.com/Broadband/
2 http://www.digplanet.com/wiki/Programmable Universal Machine for Assembly
3 http://www.davincisurgery.com/index.php
4 http://mars.jpl.nasa.gov/msl/mission/rover/



– fault detection and tolerance, where software/hardware reconfigurations or
mode changes are controlled depending on what happens in the environment
(e.g., [16] use invariant monitoring and change robot’s mode accordingly; [20]
uses a hierarchical decomposition of actions to switch between alternatives);

– controller synthesis, where the robot behavior is guaranteed by construction
of the movement or action policy (e.g., [9] for continuous control of non-linear
robots; [21] that verifies an action policy while learning it).

Another specificity in robot development is its fast evolution. This fast evo-
lution leads to short development cycles of several month unlike in aeronautics
or in the nuclear field which have development cycles of tenth of years. Due to
this we need fast and accurate methods and tools to guarantee that the robots
will always have a safe behavior. In order to have fast these methods and these
tools, we need to reuse hardware and software parts between robots and design
these parts with maximum modularity.

To help the software robot developer, modern designs are made of two parts:
a middleware and a component-based architecture. The middleware provides op-
erating system and hardware abstractions. The middleware typically proposes
an Application Programming Interface to develop and deploy tasks and threads
without taking into account the operating system and thus the hardware speci-
ficities. Among robotic-oriented middlewares, we can cite OROCOS [27] as a
real-time focused middleware, ROS [22] that provides a large amount of already
developed components, and Gen

oM3 [19] that provides a component generator
with a component modeling language.

A component-based design pattern allows the software architect to build a
robotic architecture by assembling existing software components (see [5, 6] for
a survey on component-based software engineering in robotics). These software
components are made of two parts: their communication interface and their inter-
nal behavior. Communications are driven by connecting ports or by service calls
between two or more components. The component’s behavior is often defined by
a state-machine, that allows to define several operational modes, including some
degraded mode to be robust to sensor or software failures.

In this paper, we propose an evolution of the Mauve Domain Specific Lan-
guage (DSL) [18] to specify robotic architectures through an extensive use of
models. These models are then used to generate the executable codes run on the
real robots. From this DSL, we then provide methods and tools to analyze and
check the validity of functional and temporal properties leading to robot safety.

2 Experimental setup

We will illustrate our approach using a concrete robotic experiment. This case
study uses a Pioneer 3-DX robot (P3DX) from Adept Mobile Robots (Fig. 1).
The P3DX is a wheeled robot equipped with an internal computer which serves
as a controller interface. Its stock capabilities allows it to move around through
its wheel speed controller and avoid some obstacles using its sonar range finders.



Its engines are sufficiently powerful to move around outdoors on reasonably
rough terrains and its small size allows it to find its way into corridors. Our
P3DX platform is equipped with a Hokuyo UTM-30LX laser scanning range
finder and an Asus Xtion Pro Live depth and color camera. In this case study,
our robot has to navigate safely in unknown and dynamic environments. We
then need some navigation functions (including localization and mapping), a
path planning algorithm to compute paths to follow, and a control function to
follow correctly this path. We also want our robot to detect and track specific
objects identified by color patterns.

Fig. 1. The P3DX platform equipped with a Hokuyo laser and a laptop for processing

The objective of this work is to propose first a design process for software ar-
chitectures of autonomous robots, based on a DSL (section 3), and then to prove
some aspects of the robot safety using tools leaning upon this DSL (section 4).

3 The Mauve DSL

This section presents the Mauve DSL for specifying and conceiving software
architectures for autonomous robots. This DSL is an extension of [18]. It is
based on four layers: codels, that correspond to the computational aspects of the
software, components, that are elementary blocks of the software, architecture,
where components are instantiated and connected, and deployment, where the
execution policy of the architecture is defined depending on the target.

3.1 Codels

A codel (term taken from [19]) stands for an elementary code and represents
any computational part of a component. The Mauve DSL does not provide any
way to implement the codel (which could be implemented in any language; for
code generation and analysis, we only support C and C++). The Mauve DSL
provides instead a language for specifying the codels, that will then be called from
components. Listing 1.1 shows the specification of codels implementing detection
of an object of interest (Detect), and tracking of this object on images (Track).
They both take an image as input, and provide the pose of the object.



Code 1.1. Codels from an image detection and tracking algorithm

1 codel Detect(img: Img): Pose
2 codel Track(img: Img): Pose

3.2 Components

According to [28], a component is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.

Therefore, in order to help composition and modularity, we decompose the
specification of a component into a shell (or interfaces) and a core (or behav-
ior). In order to perform some validation of the component and architecture
behavior, we also define some contracts that indicate the conditions of use of the
component.

Component’s Shell The shell of a component defines its interface, i.e. its
inputs and outputs. We propose three types of interfaces: properties, which are
component parameters, generally set at instantiation or deployment time (e.g.,
the max velocity of a platform); data ports, similar to the push pattern of [25],
are used to publish data from/to a component; they are typed and oriented;
operations, similar to the query pattern of [25], are used to call functions or send
requests to components.

Specifying a shell in then done by listing the properties of a component (with
a type and possibly a default value), its ports (with a type and a direction – in
or out), and its operations (same way as codel signature). Values of properties,
as well as connections of ports and operations, are not done at the moment of
specifying a component shell. Instead, they are defined when instantiating and
connecting components (architecture specification step).

Listing 1.2 shows the shell specification of the detection and tracking com-
ponent. It has one property, cameraType, used to configure properly the com-
ponent, e.g. by mapping the camera type value to resolution and focal length of
the sensor. Default value refers to a Asus Xtion depth sensor. The component
also has one input port imgPort to get an image stream (typically from a sensor
component) and one output port objectPort exposing the pose of the detected
and tracked object.

Code 1.2. Shell of the detection and tracking component

1 shell DT_Shell {
2 property cameraType: string default "Xtion"
3 input port imgPort: Img
4 output port objectPort: Pose
5 }

Component’s Core The core of a component defines its behavior. It can be
described on two ways: first by mapping provided operations to codels, and
second, by specifying a state-machine. Using a state-machine representation has



some advantages, among which clearly separating the different functionalities
of the component, and providing some states to handle errors, then increasing
the robustness or reconfiguration skills of the architecture. A state-machine is
defined by a set of states and a set of transitions connecting the states. Each
state represents a step in the functional behavior. The whole functionality is
achieved by a sequence of states connected with transitions. The execution of
each state is decomposed into several blocks, following the same approach than
in UML state charts for instance:

– entry, defining instructions called only when a state is entered;
– run, called each time a state is active;
– exit, called when a state is exited (through a transition);
– handle, called when no transition is taken;

In each block, it is possible to write some instructions provided by Mauve, such
as reading or writing on ports, calling codels, or calling remote operations. In
each state, possible transitions are specified by a label, a guard, and a destination
state. Listing 1.3 shows the core of the detection and tracking component. Its
state machine is made of four states:

– Initialize (line 3), in which some algorithm data structures are prepared;
– Cleanup (line 6), in which data are cleaned;
– Detecting (line 9), in which the input port is read, the detecting algorithm

is called, and the resulting pose is published on the output port;
– Tracking (line 18), similar for the tracking algorithm.

Transitions are guarded by events that will come either from the component
itself ([pose] on line 16 checks that a pose has been returned by Detect) or
triggered from other components.

Code 1.3. State-machine example using the detection and tracking codels

1 core DT_Core (DT_Shell) {
2 statemachine {
3 initial state Initialize {
4 transition toDetecting [not initialize] -> Detecting
5 }
6 state Cleanup {
7 transition toInitialize [not cleanup] -> Initialize
8 }
9 state Detecting {

10 run {image = read imgPort}
11 handle {
12 pose = Detect(image);
13 write pose in objectPort
14 }
15 transition toCleanup [cleanup] -> Cleanup
16 transition toTracking [pose] -> Tracking
17 }
18 state Tracking {
19 run {image = read imgPort}
20 handle {
21 pose = Track(image);
22 write pose in objectPort
23 }
24 transition toDetecting [pose] -> Detecting
25 }
26 }
27 }



Component’s Contracts Contracts are meant to represent the condition of
use of a component, and the result or behavior we could expect when execut-
ing this component. The shell of the component already specifies a contract: it
declares the inputs needed by the component, and the type of data published
by the component. The Mauve DSL provides complementary instructions to
specify functional properties of the components. These properties represent an
abstraction of the behavior of the component. For instance, the role of the guid-
ance component is to follow a path while avoiding obstacles. For this component
the most important feature regarding safety is to avoid collisions. Listing 1.4
shows how this property is expressed as a contract on the guidance component:
the robot has to stop (speed command sent on speedPort must be equal to
0) whenever something is detected (read from the scanPort) within a safety
distance (defined as a component property).

Code 1.4. Contract on the Guidance component

1 shell Guidance_Shell {
2 codel minRange(scan: Scan): double
3 property robotType: string default "unicycle"
4 property safetyMargin: double default 0.5
5 input port scanPort: Scan
6 output port speedPort: Speed
7

8 contract emergencyStop:
9 [minRange(read scanPort) < safetyMargin ⇒ write 0 in speedPort]

3.3 Architecture

Creating a functional software layer for autonomous robots settles on reusing
and composing basic component blocks. The architecture design step consists
in instantiating some components (defined using the previous language instruc-
tions), possibly define some properties. Then these components are connected
together, specifying the configuration of the communication. For instance, it is
where we can specify that a connection between two ports is buffered, and specify
the management policy of the buffer (size, circular or not).

We had developed a Navigation, Guidance and Control component-based ar-
chitecture meant to be run on mobile robots [13], that we modified, improved,
and adapted to the match the Mauve DSL presented in this paper. It results in
the architecture of Fig. 2, made of eight components (drawn as circles): com-
ponents for sensor (Camera and Laser) and actuator (Robot) interfaces; the
Navigation, Guidance and Control components managing movements; a SLAM

component to build a map and navigate in it; and finally the Detection and

Tracking component.
This architecture is specified using the Mauve DSL. Listing 1.5 shows a piece

of the architecture specification where two components are instantiated: camera
and detectTrack, and the ports of the two components are connected.

Code 1.5. Part of the architecture specification

1 instance camera: Camera {}
2 instance detectTrack: DT_Core {}
3 port camera.imgPort data detectTrack.imgPort
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Fig. 2. Simplified component-based architecture running on the robot

3.4 Deployment

The deployment is the target-specific part of a real-time software development.
It will map the components and architecture specification to the final target
(environment, platform) in order to be executed. The deployment is decomposed
into several layers: the hardware, also called target, corresponds to the actual
platform used for experiments, i.e. sensors, computer units, etc. Using the Mauve
DSL, architecture components properties can be set to indicate which platform
is used, e.g., by defining the device port on which the camera is connected; the
middleware is a layer over the operating system providing a set of features that
makes development easier. For the moment, the only supported middleware is
Orocos [27], and therefore we do not provide any mean to choose the middleware.

In order to be able to analyze the deployed architecture, and more specif-
ically its real-time characteristics, we impose that each component is mapped
to at most one thread. When deploying the components, we then associate to
each component an activity indicating the execution behavior of the component.
This activity allows to define the period of the component, its priority, and its
deadline. These properties will then be mapped to Orocos components activi-
ties, resulting in properties of the corresponding OS threads. We can also set
the affinity of a component, i.e. the core on which the component will run if
executing on a multi-core platform.

Listing 1.6 shows a part of a deployment where the robot component has
a period and a deadline of 100ms, a priority of 0. Furthermore, we can specify
the execution time of codels (codel command takes 16ms to execute), used for
real-time analysis (see section 4.1).

Code 1.6. Part of a deployment specification

1 deployment {
2 command = 16..16
3 activity robot {
4 priority = 0
5 period = 100
6 deadline = 100
7 }

3.5 Execution

Along with the Mauve DSL, we provide a code generation toolchain that, for each
Mauve component, generates the code of an Orocos component linked with the
corresponding codels library; and for each Mauve architecture plus deployment,



generates the code of an Orocos script that deploys the architecture (loads the
components, instantiate them, connects them, . . . ) The result is then directly
executable on the specified platform.

3.6 Why a new DSL?

A lot of software modeling DSLs for robotics can be found in the literature.
In [15] the robot’s software architecture is modeled in three main layers: the
functional architecture, the component architecture and the runtime architec-
ture. The functional architecture expresses the functionality needed in an archi-
tecture. The component architecture details the software implementation of the
architecture’s functionality. Lastly the runtime architecture defines the deploy-
ment of the components on the robot’s operating system. This framework also
generates roslaunch files for ROS [22]. [10] uses an UML-based language called
RobotML, based on an ontology to reuse as much as possible robotic knowledge.
This knowledge is split in five packages: robotic system, system environment, data
types, robotic mission and platform. Afterward the robotic architecture is defined
using the RobotML packages, and it is possible to generate executable code
for several robotic middlewares, among which Orocos. V3CMM [1] separates
the robotic architecture in three abstraction levels: Computation Independent
Models, Platform-Independent Models and Platform-Specific Models. Once the
architecture is set-up, a model-to-model transformation is used to provide UML
models, and then executable code through a model-to-text transformation to the
Ada 2005 programming language. In this paper, we have described the Mauve
DSL. Mauve relies on more or less the same concepts than other DSLs. The aim
of Mauve is to not only provide architectural abstraction, simple software design
and code generation but also to systematically perform validation and analy-
sis based on these models. It hence seemed difficult to reuse an existing DSL,
as we needed to specify new concepts (or to prevent the use of existing concepts).

Two major works are using DSLs for architecture specification along with a
validation process: SmartSoft [26] models the architecture and the components
through model layers. It provides real-time specific parameters to allow a static
analysis of the architecture through CHEDDAR [11]. Regarding the real-time
analysis, we propose to reason on the component models to have a more accurate
estimation of architecture schedulability. Moreover, we are concerned with other
analyzes than just real-time analysis. BIP [2] is a modeling language that comes
with safety properties and deadlock freedom analysis tools. The safety properties
ensure that no unexpected behavior will ever happen thanks to global state
exploration. The deadlock analysis go through a structural analysis to guarantee
the software will keep its nominal execution. The major drawback of using this
paradigm is that generated code is tied to their own execution engine (behaving
as a scheduler), and real-time analysis is not dealt with.



4 Validation tools

The main objective of our work is to perform some validation of the executed
software architecture for an autonomous robot. We therefore lean upon the mod-
eling framework presented above in order to reason on the architecture behavior.
Regarding the presented experimental case study, it is for instance important for
the P3DX robot to ensure that it will not collide into any object in the environ-
ment. Proving this safety constraint relies on several concerns: we first need to
prove that a logical property is true, by reasoning on the contracts provided by
the components. Second, we need to check that all component will be able to
execute in time. This last property is called schedulability.

4.1 Real-time analysis

The aim of the real-time analysis is to a priori check the schedulability of the
architecture on a specific system, before deploying it on the real system. Usually
the schedulability of a system is defined by the schedulability of all the tasks
involved in the system. We do not detail in this paper all the models and com-
putations for the analysis to happen, as it is a bit out of the scope of the paper,
but we give a brief explanation of the whole process.

When specifying the deployment of the architecture using the Mauve DSL,
we map components to real-time tasks on the system, with tasks parameters such
as period, deadline, and priority. Classical schedulability methods directly use
these parameters, along with an estimation of the computation time of each task,
to compute the Worst Case Response Time (WCRT) of a task. If the WCRT of
a task is lesser than its period, the task is said schedulable.

We have adapted this process to use models of components, in order to per-
form a more accurate computation of the WCRT. We transform component
models into Periodic State-Machines (PSM), on which each transition is labeled
with the time taken to go from one state to another, computed from the state
blocks, the execution times of codels, and the interactions between components
(e.g., when a component calls an operation on another component). The execu-
tion time of each codel is obtained using Worst Case Execution Times (WCET)
analysis. We tried two approaches depending on the codels: a static analysis, us-
ing Otawa [23], where the binary code is directly analyzed to estimate the number
of cycles a function will take to execute; and a statistical analysis based on exe-
cution runs of the component. For now we made only basic statistics to deduce
an experimental WCET, but we are currently working on using extreme-value
theory to have a mathematically sound estimation (with a given probability)
of the WCET. We then modified the classical WCRT computation algorithm
to take into account tasks state-machines (PSMs) and components interactions.
It results in a new evaluation, called WCRT+, which is still pessimistic (hence
safe) but more accurate then the classical approach.

Table 1 presents the results of the schedulability analysis of our robotic ar-
chitecture. The lower the priority value, the higher the priority of the compo-
nent. The WCET value corresponds to the WCET of the most time-consuming



transition of the PSM. The WCRT and WCRT+ columns are respectively the
“classical” and our state-machine based evaluations. The WCRT+ computation
method proves the schedulability of the architecture whereas the typical method
indicates the Navigation component may not be schedulable.

Table 1. Real-time characteristics of the architecture’s components

component priority WCET WCRT WCRT+ deadline

Robot 0 16 16 16 100
Control 1 3 19 19 100
Guidance 2 12 31 31 100
Laser 3 22 53 53 150
SLAM 4 30 83 83 150
Camera 5 10 93 93 250
Detection and Tracking 6 30 237 237 250
Navigation 7 30 338 297 300

4.2 Checking behavioral properties

Previous section shows how we used the component and architecture models
to accurately compute the deadline (and the schedulability) of the deployed
components. Enforcing these deadlines is needed for a good behavior of the
robot. However it is not sufficient to guarantee the correctness of this behavior.
In this section, we propose to analyze the correctness of this behavior by studying
the evolution of the components (and their state machines) along the time.

For the moment, the properties that we are able to manage rely on observa-
tion points: we can specify instructions or states on which we want to elaborate
a property. For instance, we can express, using these observation points, that a
component will eventually enter in state A, or that when component guid en-
ters state running, then component control will eventually enter state running
before 10 time units (see listing 1.7).

Code 1.7. Specification of a property

1 property latency = guid.running leadsto control.running within [0, 10]
2 assert latency

Formally, these properties are expressed using a temporal logic that accepts
Dwyer’s patterns [12] extended with timed data. Verifying such properties is
quite complex in general, as we must analyze both the control flow of the archi-
tecture but also the interactions between components (leading to task preemp-
tion). We then developed a specific validation process that directly uses temporal
information coming from the real-time analysis presented in section 4.1. For that,
the Mauve model of the components and architecture, along with the properties
we want to analyze, are transformed into Timed Petri Nets using the RT-Fiacre
language [3]. The resulting model is then analyzed using Tina [4], which either
validates the property or provides a counter example as a timed execution of the
system.



5 Conclusion and perspectives

In this paper, we have presented a robotic architecture modeling framework
based on the Mauve DSL. It allows to model robotic software architectures
from the algorithms to a real-time deployment thanks to four layers: the codels
specification, the component modes, the specification of the architecture and,
finally, the deployment. From these models, Mauve is able to generate C++
executable code designed for Orocos-RTT [27]. Along with the Mauve DSL, we
have provided tools to first analyze the real-time correctness of the architecture,
and second to check the validity of some behavioral properties.

For future developments, we plan to improve the validation toolchain by
analyzing not only behavioral properties but also property that contains data,
such as the contract defined in listing 1.4. To do that, we will rely on well known
tools for codel analyzes, such as Frama-C [8] and Coccinelle [7]. Finally, we plan
to apply our design and validation process to other kind of robots, like hybrid
leg-wheel robots and quadcopters.
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