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Abstract—Developing robotic applications requires to design and implement complex software architectures. These architectures
must embed advanced algorithms that include capacities to adapt to unforeseen events like external disturbances, sensor or actuator
failures. To improve the system robustness, its behavior should be adapted at runtime by a reconfiguration of its software architecture.
Such reconfiguration must be done safely and efficiently, while ensuring functional constraints and a minimal quality of service of the
system. Among these constraints, preserving real-time properties of the reconfiguration process is a key feature. In this paper, we
present the design of a new component-based middleware that allows to perform software architecture reconfigurations with a focus
on real-time constraints.

Index Terms—Control architectures and programming, Reconfigurable computing, Real-time systems, Middleware, Robotics.

1 INTRODUCTION

E NSURING software dependability of complex robotic ap-
plications is an essential issue in the democratization of

autonomous robots usage in everyday life. Many examples
enlighten the critical need for safety in autonomous systems,
among which drone applications, self-driving cars, or robot-
human cooperation.

All these applications need for autonomous and safe robots:
the robotic system must be able to adapt all along its mission
(adapt to environment changes or to system failures). But the
robotic system has also to be reliable, in order to be accepted
both by some regulation office, and by end-users.

To address the problem of developing the software part
of such autonomous and safe robots, roboticists have largely
adopted the use of middlewares, that ease the development
process, regarding collaborative development, separation of
roles, maintainability and reusability of the software pieces.

Nevertheless, the robotic middlewares have almost not
addressed two key issues of safe and autonomous robot
development: (1) reconfiguration mechanisms, and (2) real-
time guarantees.
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In this paper, we present MAUVE Runtime, a new middle-
ware for developing component-based software architectures
with a focus on real-time guarantees and reconfiguration mech-
anisms. None of the existing middlewares used in robotics
provides real-time safe reconfiguration mechanisms.

The paper is organized as follows. Next section analyses the
available middlewares or development processes, with respect
to real-time concerns and reconfiguration mechanisms. Section
3 describes the concepts of the MAUVE Runtime. Some
benchmarking regarding the real-time implementation is given
in Sec. 4. Finally, a robotic application is described in Sec. 5.

2 RELATED WORKS

Modern approaches in software development of robotic appli-
cations settle on the paradigm of Component-Based Software
Engineering (CBSE, [1]). A component-based design allows
the software architect to build a robotic architecture by as-
sembling existing software components [2]. These software
components are made of two parts: their communication
interface and their internal behaviour. Communications are
driven by connecting ports or by service calls between two or
more components. The component’s behaviour is often defined
by a state-machine, that allows to define several operational
modes, including some degraded mode to be robust to sensor
or software failures.

This component-based approach is often associated with
modelling languages. These modelling languages are almost
every time Domain Specific Languages (DSLs): they are
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dedicated to model component-based software architecture,
including specificities related to an application or some char-
acteristics of the architecture in development.

2.1 Real-time middlewares

Some of the DSL-based processes have dealt with real-time
features. For instance, BIP [3] allows to model components
based on a Behaviour-Interaction-Priorities structure. From
a BIP model, it is possible to generate code that will be
executed by a real-time BIP engine. Genom [4] allows to
model components, assigning several tasks to components,
each task supporting the execution of services. Genom models
can be mapped to several middlewares/systems, including
Pocolibs (the original Genom middleware), that focuses on
data sharing between processes, and can run on VxWorks.
SmartSoft/SmartMARS [5], [6] describes components and
how they are mapped to real-time tasks of the system. Some
schedulability analysis is made, as far as the execution time
of the components are available. In MAUVE [7], components
are mapped to only one task, and a periodic state-machine
is used to model the component behavior in order to improve
the accuracy of schedulability analyses [8]. MAUVE generates
ROS/Orocos integrated architectures.

Some of these processes use standard middlewares to im-
plement components and architectures, either general pur-
pose middlewares (like DDS in Smarsoft [5]), or robotic
middlewares. For instance, Genom [4] generates Pocolibs,
ROS [9], or Orocos [10] code. MAUVE generates ROS/Orocos
integrated code.

However, when developing software for robotic application,
the use of the API of the middleware is still very common.
Most of the robot developers are programmers. Even if the
model-based development is clearly the way to go, robot
architecture should be able to integrate both generated compo-
nents and hand-written components. Having a design process
promoting model-based engineering and compliant with a
usable middleware is clearly a must. ROS [9], while being the
most widespread middleware, does not provide any real-time
specific API, nor any real-time execution model of the nodes.
The reference middleware regarding real-time features is Oro-
cos [10]. It can be directly used by programmers, through
the ROS/Orocos integration pipeline. Rock [11], Genom [4],
MAUVE [7] and HyperFlex [12] propose a component-based
model mapped to Orocos components.

As far as we know, MAUVE is the only component-based
process that has used model of the component behaviours
to evaluate accurate schedulability analysis of the software.
However, Orocos suffers some drawbacks, among which the
lack of determinism in the deployment process [13], and the
fact that it is almost impossible to exhibit a model from
hand-coded component as the Orocos API is too far from the
MAUVE execution model.

2.2 Reconfigurable middlewares

Reconfiguration is another key issue when implementing
adaptable functions. Few works related to robotic software
development have considered the capability to reconfigure
software architectures. While stopping a component and start-
ing another one is always possible, the impact of real-time
characteristics of the software architecture is always unknown.
In [14], the authors propose to address it by implement-
ing domain-specific real-time operating system mechanisms
together with port-based object software abstraction. It was
developed for robotic manipulator to realize dynamic reconfig-
uration of controller. In [15], the authors introduce a software
framework based on CORBA that allows to perform recon-
figuration of distributed architecture based on components
replacement while minimizing disruption to the application
and limiting run-time overhead to meet real-time requirements
of critical robotic applications. In [16], they propose an
adaptive middleware system for distributed sensors, but only
to reduce the power consumption by dynamically trading off
performance requirements where real-time considerations are
considered as a problem of collected data synchronization.
In [17], authors consider the need for dynamic self-adaption
in modules of systems such as robots, in order to provide
fault-tolerance and propose the Containment Unit Architecture
that supports the switching between different resource con-
figurations and operational components at run-time as long
as the transition between configurations is relatively simple.
Orocos and Smartsoft have also tried to provide guarantees
when rewiring the architecture, i.e. when disconnecting and
reconnecting data ports.

3 MAUVE RUNTIME

The rationale of developing the MAUVE Runtime comes from
the need to provide reconfiguration mechanisms as well as a
real-time execution model at the middleware level. It is indeed
essential to have a middleware implementation that matches
the formal behaviour and execution model of the software
architecture in order to be able to make accurate analysis.

3.1 Overview

The MAUVE Runtime is a component-based middleware that
allows to perform software architecture reconfigurations with
a focus on real-time constraints. The software architecture is
described as components connected to each others through
resources, and configured through properties. Components
and resources are defined by a Shell, defining the external
part of the component, and a Core, defining the inner data
and functions of the component. Moreover, components have
a Finite State-Machine, defining the temporal behavior of
the component ; resources have an Interface, defining the
services provided by the resource. An Architecture is then built
by instantiating, connecting and configuring components and
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resources. Every element in MAUVE Runtime is Configurable,
meaning that the element has an internal state that limits when
the inner data of the element are modifiable.

3.2 Configurable elements
In the MAUVE Runtime every element is configurable: the
shells, the cores, the finite state machines, the interfaces,
the components, the resources and the architectures. Once an
element is configured, its characteristics cannot be modified
anymore. For instance, properties of shells cannot be modified,
clocks of state-machines cannot be modified, or components
of an architecture cannot be modified. Architecture recon-
figuration will then need to unconfigure elements first, then
reconfigure them (see 3.9).

3.2.1 Configurable state machine
Each configurable element can be in (at least) two states:
not configured or configured (Fig. 1). At first, the element
is not configured. Calling the method configure() can change
its state into configured in case of success. Calling the method
cleanup() changes its state into not configured.

not configuredstart configured
configure():true

cleanup()

configure():false

Fig. 1: Configurable state machine

3.2.2 Configurable dependency
The different elements of the MAUVE Runtime are structured
by composition relations and dependencies. For example a
component contains a shell, a core and a finite state machine.
Each core depends on its shell and each finite state machine
depends on its core (and by transitivity depends on its shell).

The composition relations and dependencies between ele-
ments produce a complete order. For the components, this
order is:

(Shell← Core← FSM)← Component (1)

Consequently, while configuring a component, its shell is
configured first, then its core, then its finite state machine and
finally the component is configured. Moreover, if (for example)
the configuration of the core fails, then neither the FSM nor
the component can be configured.

The configurable topological order is important for the
architecture configuration but also for the reconfiguration pro-
cess. The reconfiguration of a component core indeed implies
the cleanup of its state machine, but there is no impact on

its shell. This mechanism is important because it allows to
reconfigure inner elements without any impact on the rest of
the architecture.

3.2.3 Configurable hooks

By default the configure method simply try to configure the
inner elements and returns true, and the cleanup simply cleans
the inner elements. The behavior of the configure and the
cleanup can be extended by respectively overriding the con-
figure hook and cleanup hook methods in the corresponding
element.

3.3 Common elements

Common elements to components and resources are presented
in this section.

3.3.1 Property

Each shell, core, finite state machine and interface can contain
several properties. The properties are used to configure the
corresponding element. The value of the properties can only
be changed when the element is not configured. Once in the
configured state, its properties can only be read.

3.3.2 Shell

The shell describes the external part of a component or a
resource. It contains ports and properties. The shell is the only
visible part outside the component/resource. Ports are used to
exchange data between components and resources. Ports are
divided in four types depending on their capabilities:
• ReadPort<T> can read data of type T;
• WritePort<T> can write data of type T;
• CallPort<R, P...> can call a method with P...

parameters and retrieve a result of type R;
• EventPort is used to trigger an action to the connected

service.
Listing 1 shows the definition of the shell

ObstacleAvoidance (further described in Sec. 5).
It contains three read ports and two write ports.

Listing 1: Shell ObstacleAvoidance
1 s t r u c t O b s t a c l e A v o i d a n c e S h e l l : p u b l i c S h e l l {
2 ReadPor t<Pose2D > & pose =
3 mk read por t<Pose2D >(” pose ” , Pose2D ( ) ) ;
4 ReadPor t<Point2D> & g o a l =
5 mk read por t<Point2D>(” g o a l ” , Poin t2D ( ) ) ;
6 W r i t e P o r t<V e l o c i t y> & command =
7 mk wr i t e po r t<V e l o c i t y >(”command” ) ;
8 W r i t e P o r t<double> & d i s t a n c e t o g o a l =
9 mk wr i t e po r t<double>(” d i s t a n c e t o g o a l ” ) ;

10 ReadPor t<LaserScan> & scan =
11 mk read por t<LaserScan >(” s can ” , Lase rScan ( ) ) ;
12 } ;
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3.3.3 Core
The core describes both the algorithmic part and the inner data
of the component/resource. Thus, the core defines attributes
and methods. The core depends on the shell which means its
methods can interact with the shell. Consequently a core can
read properties, and read and write data, on ports.

Listing 2 defines the core of the PotentialField. Its
internal variables are the current goal and the current robot
position, as well as the path that is being executed. It defines
a set of methods that will be called from the state-machine.

Listing 2: Core PotentialField
1 s t r u c t P o t e n t i a l F i e l d C o r e
2 : p u b l i c r u n t i m e : : Core<O b s t a c l e A v o i d a n c e S h e l l> {
3

4 P r o p e r t y<double> & o b s t a c l e d i s t a n c e =
5 mk prope r ty ( ” o b s t a c l e d i s t a n c e ” , 0 . 8 ) ;
6 P r o p e r t y<double> & s a f e t y d i s t a n c e =
7 mk prope r ty ( ” s a f e t y d i s t a n c e ” , 0 . 8 ) ;
8 P r o p e r t y<double> & nu = mk prope r ty ( ” nu ” , 0 . 2 ) ;
9 P r o p e r t y<double> & p s i = mk prope r ty ( ” p s i ” , 0 . 2 ) ;

10

11 bool new goal ( ) ;
12 bool i s a r r i v e d ( ) ;
13 . . .
14 p r i v a t e :
15 . . .
16 } ;

3.4 Components
As previously mentioned a component is made of a shell, a
core and a finite state machine (FSM). The core depends on
the shell and the FSM depends on the core. Thus the core
can use shell elements, and the FSM can use core and shell
elements.

Finite State-Machine model in Orocos [10] allows to define
only Periodic State-Machine, i.e. state-machines that execute
one and only one state at each period, with a fixed period.
Genom [4] allows to specify either successive transitions
during a same period, or transitions that must yield on the
next component period. In MAUVE, we have extended this
behaviour by defining clock-based FSMs, composed of two
different type of states, and transitions:
• execution states are aimed to execute code (i.e. methods

defined in the component’s core);
• synchronization states pause the component until its in-

ternal clock reaches a specific value;
• transitions between states are ordered and guarded.

This model allows to define sequences of execution states,
then executed without waiting, and synchronization states with
different values, then leading to managing different ”periods”
of execution within the same component.

Listing 3 defines the PotentialFieldFSM of the con-
trol component. It contains three execution states and three
synchronization states.

Listing 3: FSM of the PotentialField control component
1 s t r u c t P o t e n t i a l F i e l d F S M
2 : p u b l i c F i n i t e S t a t e M a c h i n e
3 <O b s t a c l e A v o i d a n c e S h e l l , P o t e n t i a l F i e l d C o r e> {
4

5 E x e c S t a t e<P o t e n t i a l F i e l d C o r e> & w a i t g o a l =
6 mk execu t ion ( ” w a i t g o a l ” ,
7 &P o t e n t i a l F i e l d C o r e : : r e a d i n p u t g o a l ) ;
8 S y n c h r o S t a t e<P o t e n t i a l F i e l d C o r e> & s y n c w a i t =
9 m k s y n c h r o n i z a t i o n ( ” s y n c w a i t ” , ms to ns ( 1 0 0 ) ) ;

10 . . .
11 bool c o n f i g u r e h o o k ( ) o v e r r i d e {
12 s e t i n i t i a l ( w a i t g o a l ) ;
13 m k t r a n s i t i o n ( w a i t g o a l ,
14 &P o t e n t i a l F i e l d C o r e : : new goal ,
15 r e a c h g o a l ) ;
16 s e t n e x t ( w a i t g o a l , s y n c w a i t ) ;
17 . . .
18 re turn true ;
19 } ;
20 } ;

Figure 2 represents the corresponding clock-based FSM.
The execution state WG is where the arrival of a new goal is
checked. If no goal has arrived, the component waits 100ms
in the synchronization state SW . Otherwise the component
sends commands to reach the goal, in the execution state RG.
If the goal is reached then the execution state AG is executed,
and the component waits 50ms before checking for a new
goal. Reaching the goal is implemented as a control loop with
a period of 10ms (state SR).

WGstart RG

AG

SW : 100ms SR : 10ms

SA : 50ms

2: ∅

1: new goal()

2: ∅

1: is arrived()

Fig. 2: Clock-based FSM of the control component: circles
represent execution states, Wi are wait states.

Figure 3 illustrates the timeline of the control component
for path: 〈WG , SW , WG, RG, SR, RG, SR, RG, AG, SA,
WG〉.

tWG SW WGRG SR RG SR RG AG SA WG

0 100 110 120 170

Fig. 3: Control component timeline.

3.5 Resources
The MAUVE Runtime has a generalized inter-components
communication scheme with the notion of Resource. A Re-
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source has two main objectives: first it contains data, second
it provides several services to interact with its inner data.
Component ports are connected to a resource using its cor-
responding services.

A Resource is made of a shell, a core and an interface. The
core depends on the shell and the interface depends on the
core. Thus the core can use shell elements, and the interface
can use core and shell elements.

An interface is a configurable element and defines
services, it depends on a core (and a shell). Like ports,
services are divided in four types depending on their
capabilities: ReadService<T>, WriteService<T>,
CallService<R, P...> and EventService. A
method of the corresponding core is associated with each
service of the interface.

Listing 4 defines the interface of the ROS Publisher re-
source. The main purpose of the ROS Publisher resource is to
ease the communication from the MAUVE Runtime to ROS.
The interface has a single service write which converts a data
of type T to a ROS type ROS_T and publishes it to the
previously defined topic. The ROS topic is specified in the
shell of the resource and the conversion method is defined in
the core.

Listing 4: ROSPublisher Interface
1 t emplate <typename T , typename ROS T>
2 s t r u c t P u b l i s h e r I n t e r f a c e :
3 p u b l i c I n t e r f a c e <
4 P u b l i s h e r S h e l l<T , ROS T>,
5 P u b l i s h e r C o r e<T , ROS T>> {
6 W r i t e S e r v i c e<T> & w r i t e =
7 m k w r i t e s e r v i c e<T>(” w r i t e ” ,
8 &P u b l i s h e r C o r e<T , ROS T> : : p u b l i s h ) ;
9 } ;

The basic resources SharedData and RingBuffer are
provided by the MAUVE Runtime to mimic classical data
flow communication, and are accessible through read and write
services. A specific resource can be created by defining its
shell, its core and its interface. Moreover, defining specific
resources with advanced processings allows to reduce data
communications. For example, sharing the map in a resource
between a SLAM component and a Navigation component
reduces the number of copies of the map and the number of
data sent (less memory used, lower computation time).

It is important to notice that resources do not have any
internal activity, which means that their core methods are
executed when a component interacts with the resource.

From a real-time point of view, access to shared data
may be a real issue because it can induce priority inversion,
deadlock, etc. In order to avoid those problems and to maintain
the determinism of the system, Resources are the only way
to exchange data between components. Moreover, Resource
access has been secured to provide a safe inter-components
communication, thanks to three points:

• each Resource is protected by a mutex to ensure data
integrity;

• due to the implementation of the services and the protec-
tion of the Resource, the interlining access of resources
is not possible1;

• the Resource mutex is configured to use the real-time
PIP protocol [18] to guarantee determinism and avoid
priority inversion.

3.6 Architecture
Components and resources are instantiated within the architec-
ture. Figure 5 illustrates the architecture configuration in which
the properties of the different elements are specified and the
components and resources ports are connected to the services
of the resources. Finally, the components and the resources
are configured.

Listing 5: architecture
1 s t r u c t N a v i g a t i o n A r c h i t e c t u r e : p u b l i c A r c h i t e c t u r e {
2 / / Components
3 Hokuyo & hokuyo = mk component<Hokuyo>(” hokuyo ” ) ;
4 P o t e n t i a l F i e l d & c o n t r o l =
5 mk component<P o t e n t i a l F i e l d >(” c o n t r o l ” ) ;
6 . . .
7 / / R e s o u r c e s
8 SharedData<LaserScan> & scan =
9 mk resource< SharedData<LaserScan> >(” s can ” ,

Lase rScan ( ) ) ;
10 . . .
11 bool c o n f i g u r e h o o k ( ) {
12 / / C o n n e c t i o n s
13 hokuyo . s h e l l ( ) . s can . c o n n e c t ( s can . i n t e r f a c e ( ) . w r i t e ) ;
14 c o n t r o l . s h e l l ( ) . s can . c o n n e c t ( s can . i n t e r f a c e ( ) .

r e a d v a l u e ) ;
15 . . .
16 / / P r o p e r t i e s
17 hokuyo . s h e l l ( ) . d e v i c e = ” / dev / hokuyo ” ;
18 hokuyo . fsm ( ) . p e r i o d = ms to ns ( 2 5 ) ;
19 . . .
20 / / C o n f i g u r e
21 re turn A r c h i t e c t u r e : : c o n f i g u r e h o o k ( ) ;
22 } ;
23 } ;

3.7 Deployment
Components are then mapped to real-time tasks by the De-
ployer. The MAUVE Runtime deployer has been designed to
have a complete control on the synchronization between tasks.

Timeline of Fig. 4 illustrates the deployment of two tasks
(τ1 and τ2) executed on the same processor; the task τ1 has
an higher priority than τ2.

At the beginning of the execution of the system, the
deployer is executed (between t0 and t1). Its main purpose
is to get and maintain a unique clock reference2 for all the
tasks, and then launch the real-time tasks. Tasks τ1 and τ2 are
synchronized by the deployer; at t1 they are released (at the

1. this point prevents deadlocks
2. the system start time is t0
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t0t1
t

τ1 τ1

t0t1
t

τ2 τ2

Fig. 4: Tasks synchronization

exact same time) and compete to the processor access. The
task τ1 is executed before τ2 because it has a higher priority.
Since the tasks, τ1 and τ2 have the same period and the same
clock reference, their synchronization is maintained during all
the execution.

3.8 Implementation

The MAUVE Runtime implementation relies on C++11 and
highly use templates. Object oriented programming principles
and subtyping allows to define subtypes of the different
elements of the MAUVE Runtime such as Shells, Cores, . . .
The subtypes can be used in the architecture specification or
in the real-time reconfiguration.

The MAUVE Runtime aims to be Real-Time. To achieve
this objective the MAUVE Runtime deployment and execution
is based on the Real-Time POSIX API. In practice each
component is mapped into a thread; the real-time scheduler
SCHED_FIFO is used to schedule the threads. The services of
the resources use mutex with the real-time protocol PIP [18]
to guarantee determinism and avoid priority inversion.

The MAUVE Runtime currently runs on different hardware
(various ARM and x86 processors) and on different Linux
distributions.

The MAUVE Runtime is open-source, under the LGPL
license. The source code is available at https://gitlab.com/
mauve/mauve runtime. Description and documentation of
MAUVE are available at https://mauve.gitlab.io.

3.9 Reconfiguration mechanisms

The MAUVE Runtime allows to perform reconfigurations
by relying both on the component model and on the real-
time deployment. It is indeed possible to stop a component,
reconfigure it by changing its properties, replacing its shell,
its core, or its FSM, and restart it again while maintaining
synchronization with the other components. Listing 6 shows
a code snapshot performing a real-time reconfiguration of the
control component.

In order to make a sound reconfiguration, with respect
to real-time task synchronization, we first get the reference
clock of the task of the component to be reconfigured.
Then we stop the task, and replace the core of the control
component. We then configure this core and restart the task
according to the same clock reference. In this example, a

Listing 6: Reconfiguration code snapshot: the core of compo-
nent control is replaced.
1 t i m e n s t c l o c k = c o n t r o l t a s k−>g e t t i m e ( ) ;
2 c o n t r o l t a s k−>s t o p ( ) ;
3 c o n t r o l−>c l e a n u p c o r e ( ) ;
4 c o n t r o l−>r e p l a c e c o r e<Fin i t eT imeAvo idanceCore >() ;
5 c o n t r o l−>c o n f i g u r e c o r e ( ) ;
6 c o n t r o l t a s k−>s t a r t ( c lock , n u l l p t r ) ;

supervision component initiates the reconfiguration of the
control component by switching its PotentialFieldCore
to the FiniteTimeAvoidanceCore. This reconfiguration
is further detailed in Sec. 5. Figure 5 illustrates the real-time
behavior of such a reconfiguration: the second task is stopped
in order to replace its core CA by the core CB (during R).
The task is restarted, the synchronization being maintained.

tS S R S

tCA CB CB

Fig. 5: Task synchronization during reconfiguration of a core
CA into CB by a supervision component S.

While considering real-time critical systems, it is important
to maintain a safe behavior even during the reconfiguration
process. Consequently, the inner state and values of the
components have to be correct, which means that the values of
the attributes are conform to the component core algorithmic.
To achieve this objective, one prerequisite is to never stop/kill
a component during its computation (running an execution
state). That is why the reconfiguration can only be triggered
between two states of the component finite state machine.

4 BENCHMARK
In this section, we present an evaluation of the MAUVE
Runtime implementation on a simple benchmark. The source
code of this benchmark is available at https://gitlab.com/
MAUVE/benchmarking. The traces that allowed to make the
following tables are available at https://mauve.gitlab.io/files/
benchmark runtime joser.tar.gz.

4.1 Benchmarking process
This benchmark is done with a simple architecture made
of two components, A and B. A disturbing process is also
launched to analyze its impact on the scheduling on the two
main components. The computation time of this process is
between 10% and 50% of the CPU.

Each component is a simple periodic component, with no
input/output. It has a time-consuming function (implemented
using a loop on the getrusage instruction to evaluate the
CPU time associated to its thread).

https://gitlab.com/mauve/mauve_runtime
https://gitlab.com/mauve/mauve_runtime
https://mauve.gitlab.io
https://gitlab.com/MAUVE/benchmarking
https://gitlab.com/MAUVE/benchmarking
https://mauve.gitlab.io/files/benchmark_runtime_joser.tar.gz
https://mauve.gitlab.io/files/benchmark_runtime_joser.tar.gz
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This architecture has been implemented using several mid-
dlewares and configurations.
• ROS: each component is implemented as a simple node

containing a while loop with a ROS rate to manage task
periodicity; these nodes are non real-time, as ROS does
not provide an API to build real-time tasks;

• OROCOS: each component is implemented as a real-
time periodic component; the deployment has been im-
plemented in C++ in order to configure the behavior of
the deployer;

• MAUVE: each component is implemented as a real-time
component with a simple periodic state-machine.

The configuration of the tasks involved in the benchmark
are presented on Table 1.

task A B
P T C P T C

ROS 0
0.1 0.02

0
0.1 0.01OROCOS 20 30MAUVE

TABLE 1: Configuration of the benchmark tasks. P : priority.
T : period. C: computation time. The disturbing process has a
period of 10ms, and uses a CPU time randomly drawn at each
iteration between 1 and 5ms.

In every run, task A is launched first, then component B,
in order to evaluate the real-time behavior of the runtime
regarding priority management.

We moreover implemented three variants of the OROCOS
deployment, where we changed the characteristics of the
deployer component, that is in charge of configuring and
starting the components:
• in the -prio configuration, the deployer has a higher

priority than the components;
• in the -bg configuration, the deployer has a lower

priority than the components;
• in the -isolated configuration, the deployer runs on

a specific CPU core.

4.2 Evaluation of real-time execution

Table 2 shows statistics gathered on executing the architecture
with each configuration. These statistics concern (1) the exe-
cution, i.e. the real time taken by the component to execute
one cycle, including preemptions, and (2) the periodicity, i.e.
the time between two successive executions.

These statistics show that the periodicity of the tasks are
respected in every configuration. Execution times show that:
• ROS tasks are clearly preempted by the disturbing pro-

cess: their execution time is around 20 and 35ms. each
instead of the specified 10 and 20ms;

• Orocos and MAUVE respect the priorities of tasks: real-
time tasks are not preempted by the disturbing process,
and B is always executed in priority; note that the small

variability in execution time comes from the implementa-
tion of the benchmark that loops over getrusage which
is not very accurate.

In this benchmark, the ROS API has been used in its
simplest form. The objective is indeed to compare the features
provided by the middleware. ROS provides no real-time API.
It is nevertheless possible to use native API (e.g., POSIX API)
to define real-time threads associated to a node (by setting the
scheduler and the priority) but these are standard C++ pro-
gramming features which suffer a lot of drawbacks regarding
modularity/composability of software architectures: limited
portability, configuration is hard-coded in the components, no
model of the real-time behavior. ROS also provides a nodelet
API to implement multithreading within nodes. However, this
API allows to process data with multiple threads, but does not
allow to implement periodic processings. These statistics does
not aim to show that ROS is non real-time, but to emphasize
what a real-time middleware could bring with respect to real-
time guarantees.

4.3 Evaluation of the impact of deployments
Table 3 shows statistics on the first execution of components.

ROS deploys A and B as two separate processes, whose ini-
tialization is time consuming (around 50ms for launching node
B). MAUVE deployments are consistent with the theoretical
deployment presented in Fig. 4: the clock of components
are synchronized, and B executes before A. The measure
of t1 − t0 is around 110µs, which is quite efficient. Orocos
deployment are unpredictable, whatever the configuration of
the deployer thread (more or less priority than components,
isolated on a specific core). To explain the high value of the
standard deviation of the execution offset of A, we analyzed
the execution traces and we have distinguished three kind of
behaviours.

In Fig 6, we see that A is started first (first vertical
arrow), but it takes some time until A thread is released
(at the OS level). Then A starts its execution. When B is
released, it preempts A. In this situation, the release dates of
A and B follow the starting order (A before B), then B will
systematically preempt the execution of A.

tA A A A

tB B

deployer

Fig. 6: Orocos deployment, first behaviour: B preempts A

In the situation of Fig. 7, the releases dates of A and B have
been switched: B always asks to be executed before A. This
situation may happen either when the deployer has a higher
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Execution time Periodicity
A B A B

mean stdev mean stdev mean stdev mean stdev
ROS 35.358 2.561 19.912 1.813 100.002 0.628 100.002 0.658
OROCOS-bg 31.936 1.447 12.028 1.301 99.998 0.831 100.0 0.057
OROCOS-prio 30.097 2.076 12.015 1.276 99.992 2.299 100.0 0.214
OROCOS-isolated 31.573 1.598 12.021 1.194 99.991 1.521 100.0 0.244
MAUVE 20.059 0.725 11.975 1.254 99.997 1.589 100.0 0.216

TABLE 2: Statistics on component executions in milliseconds. The execution time is the time between the start and the end
of each execution (including preemptions). The periodicity is the time between two successive executions.

First execution offset First response time
A B A B

mean stdev mean stdev mean stdev mean stdev
ROS 7.024 1.280 50.272 5.196 37.826 3.040 70.141 6.641
OROCOS-bg 101.332 4.504 100.002 0.013 134.281 0.909 114.324 0.901
OROCOS-prio 104.143 6.603 100.007 0.011 135.018 2.306 114.200 1.120
OROCOS-isolated 105.486 6.920 100.033 0.036 134.154 1.500 113.751 1.278
MAUVE 14.288 1.086 0.110 0.030 36.242 2.373 14.232 1.080

TABLE 3: Statistics on first execution of each component in milliseconds. The execution offset is the time between the
start/launch of a component and its first execution. The reponse time is the time between the start and the end of the first
execution.

priority (it then prevents A of executing), or if the Orocos
internal mechanisms take some time to release A.

tA A

tB B

deployer

Fig. 7: Orocos deployment, second behaviour: B precedes A

Figure 8 shows a third behaviour where the release dates are
such that A is released first, then preempted by B. However,
at the first execution, the deployment disturbs this behaviour,
making B execute before A. It may happen when the deployer
has a higher priority, or if the Orocos deployment takes some
time.

tA A A

tB B

deployer

Fig. 8: Orocos deployment, third behaviour: B preemts A
except at the first execution

The conclusion of these situations is that the Orocos de-
ployment is not predictable. This non determinism of the
deployment, and consequently of the order of releases (and
their relative delays), makes the execution model unknown,

as stated in the introduction (Sec. 2.1). To manage this
uncertainty, we had to make some assumptions on the schedul-
ing of components that lead to overestimated response time
computations [8].

4.4 Evaluation of reconfigurations
In order to evaluate the implementation of reconfiguration
mechanisms, we modified the MAUVE architecture of the
benchmark to make component B reconfigure component
A at some time during the execution. The reconfiguration
consists in changing A’s core by a core that takes a different
computation time. The results of this evaluation are shown in
Tab. 4.

Reconfiguration duration Periodicity of A
mean stdev mean stdev

MAUVE 0.196 0.016 99.999 0.057

TABLE 4: Statistics of the reconfiguration benchmark in
milliseconds. The reconfiguration duration is the time between
the beginning and the end of reconfiguration by component B.
The periodicity of A is the time between the beginning of the
execution just before the reconfiguration, and the execution
directly after the reconfiguration.

These results are consistent with the theoretical reconfigu-
ration model of Fig. 5. The duration of R is about 200µs.

In order to test the robustness of the real-time synchroniza-
tion when the reconfiguration takes some time, we artificially
added the computation time when reconfiguring component
A. This situation may happen when the configuration of
a component needs to access a sensor driver for instance,
or initialize large data structures. Figure 9 shows an actual
execution of such a reconfiguration.
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t

B1 B2 B3R

38.812 38.912 39.012

t
A1 A2 A2A3

Fig. 9: Actual trace from a long reconfiguration run. Time is
given in seconds since the start of the run.

After the reconfiguration is finished, A executes, but is then
preempted by B. Execution A2 then continues in the next
period, then A is executed again (A3). This last execution
corresponds to the period of A released at time 39.012. The
sequel of the execution then follows the same pattern than for
A1, B1: B is always executed first, then followed by A.

4.5 Evaluation of the inter-components communica-
tion
The MAUVE Runtime is a component-based middleware in
which components can exchange data through port by using
the different services provided by resources. In this section,
we evaluate the time taken to exchange data through the
SharedData resource3, that provides read and write
services.

To evaluate the time taken to read and write a
data, we have defined a unique component connected to a
SharedData resource. The components behavior is to write
a data to the resource, wait 10ms, read the data from the
resource, wait 10ms and loops on writing again. We have
made different runs, in which we changed the size of the
data. The results of this evaluation are shown in Tab. 5 for
the write service and Tab. 6 for the read service.

size (octets) 1 10 100 1000 10000 100000
Min (ns) 2088 1991 2078 2670 7365 77571
Max (ns) 7856 8983 10601 11947 35358 151525
Avg. (ns) 4239 4034 4319 4804 12874 120836

TABLE 5: write service computation time.

size (octets) 1 10 100 1000 10000 100000
Min (ns) 2042 1955 2167 2182 4705 38280
Max (ns) 11005 11475 10961 10939 18087 105324
Avg. (ns) 4037 3997 4198 4367 9174 64544

TABLE 6: read service computation time.

These results show three important characteristics of the
MAUVE inter-components communication:

1) the components communication through resources is
really efficient (for example reading/writing a data of
1Ko takes less than 0.01ms);

3. SharedData is the most commonly used resource in our architectures

2) for the most common data (size lower than 1ko) the
read and write services take approximatively the same
computation time;

3) if the data size is huge the communication can increase4.
In this case, an efficient solution would be to reimple-
ment a specific Resource with services to manipulate the
data while preventing from copying large data.

5 ROBOTIC APPLICATION

To illustrate our proposal, we consider a classical robotic
navigation task. The robot (illustrated on Fig. 10) has to
move in its environment to reach a specific goal. In this
simple example, the environment is represented by a static
map previously obtained during an exploration phase.

Fig. 10: Outdoor mobile robot used for the experimentations.

5.1 Implementation of the navigation task
The software architecture is described in Fig. 11. In this figure,
components are represented with rounded boxes depicting the
internal Finite State Machine and the resources are repre-
sented with square boxes. Ports associated with component
or resource shells are depicted with dark arrows and resource
services with light arrows.

5.1.1 Description of the components
The robot is equipped with an IMU (Inertial Measurement
Unit), a GNSS (Global Navigation Satellite System) receiver
used for the robot localization and 2D LIDAR (Light Detection

4. due to memory access
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Fig. 11: Architecture of the robotic application

and Ranging) used as a safety sensor to implement obstacle
avoidance function. Each sensor is managed by a MAUVE
component (ImuDriver, GnssDriver, LaserDriver).

The RobotDriver component is used to control the robot
motion, it takes velocity commands as input and returns the
position of the robot computed from odometers.

The Control component implements a guidance law
whose objective is to reach a target position by avoiding
potential obstacles. It takes as inputs the target and current
robot positions and uses Laser scan from LIDAR to detect
obstacles. It computes a velocity command used to con-
trol the robot motion. In this application, we implemented
two different algorithms, through two different cores. The
PotentialFieldCore (see Listing 2) implements the al-
gorithm of [19]. The FiniteTimeAvoidanceCore imple-
ments the algorithm of [20]. The former is more suited to
cluttered environments with close goals. The latter is more
suited to outdoor environments with distant goals.

The velocity command is not directly applied to the
RobotDriver. In order to insure safe control of the robot,
the SafetyPilot component takes desired velocity as input
and checks the absence of obstacle from laser scan to send a
safe_command to the robot driver.

The Navigation component takes a goal position and

a map as inputs; its role is first to compute a path from the
current robot position to the goal and then consecutively send
each point of the path as a target to the controller.

The clock-based Finite-State-Machine model proposed by
the MAUVE Runtime has been used in several components
to implement advanced behaviors. The Control component
and the Navigation component FSM are quite similar, and
contain a state dedicated to wait for new goals, and then a
state performing the control loop, in which the Control
component sends velocity commands to the robot, while the
Navigation component sends waypoints to the Control
component. The Control FSM is shown in Listing 3.

Clock-based FSM also allowed to define behaviors adapted
to parsing frames coming from sensor drivers. It is the case
of the GnssDriver, whose FSM will be further detailed in
Sec. 5.2.

5.1.2 Description of the resources
The components exchange data through standard resources
of type SharedData provided by the MAUVE Runtime:
target, command, safe_command, scan and map.

We have implemented specific resources to define more
advanced behaviors. The first type are resources with pro-
cessing functions that modify input data. In the presented
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architecture, such resources are gnss_to_utm and teleop.
The former transforms GNSS position (longitude, latitude) to
local coordinates (x, y) using UTM (Universal Transverse
Mercator) projection model. The latter transforms joystick
state information to a velocity command compatible with
the controlled robot. Both manage data input through a
ReadService and provide processed data as WritePort
that can trigger another resource.

The second type of specific resource is represented by the
priority resource whose objective is to select source of
data with respect to its priority. In this example, the teleop
data has a higher priority than the command data, enabling
the user to take control of the robot at anytime.

The third type of specific resource is Localization that
takes multiple sensors as input to compute estimated position
through a specific filter. This resource will be detailed in
Sec. 5.3.

The last one is the ROS Subscriber resource that provides
an interface with the ROS middleware. In the example, the
joystick driver is a ROS node that publishes on topic /joy
and is used as input for the teleop resource. The navigation
goal is also specified as a topic on ROS and used as input of
the Navigation component.

5.2 FSM of GnssDriver
Drivers are the software counterpart of hardware that manage
physical systems (sensors, actuators, ...). Hardware imple-
mentation usually involves hard timing constraints to the
software that can be managed thanks to a clock-based FSM. To
illustrate this aspect, we detail the FSM of the GnssDriver
component depicted in Fig. 12.

RSstart RF

PF

WS : 1ms WF : 10ms

WP : 100ms

2: ∅

1: sync ok()

2: ∅

1: buffer empty()

Fig. 12: Clock-based FSM of the GnssDriver component:
circles represent execution states, Wi are wait states.

The GnssDriver provides data periodically through serial
port. But the period is not guaranteed when the estimation
algorithm embedded in the GNSS receiver takes more time
than expected, further the data frame can be corrupted. To
deal with this last point, manufacturers provide a standard data
frame using header, check-sum and synchronization stamp.

The driver processing is done in three phases: first we
look for the synchronization stamp (RS), then we read the

frame (RF ), and last we check if the data buffer is empty.
In this example, the GNSS data is gathered at a frequency
of 10 Hz (100 ms period). In case of failure when reading
the synchronization stamp, the FSM goes to state WS and
waits for 1 ms. If an error occurs when reading the frame
(state RF ), the FSM goes to state WF and wait for 10 ms
before trying to read a new frame, otherwise it goes to state
PF to parse the frame. Finally, if the reading has succeeded
(going successively through states RS, RF , PF ), a wait is
done according to the period of the sensor (here 100 ms).

The benefits of the approach are double: first it provides a
cleaner implementation than a monolithic function, and second
it allows to deal with data polling in a more efficient way from
the timing point of view.

5.3 Resource Localization

The Localization resource deals with fusion of sensors
to provide estimate of the robot position relative to a reference
frame. It is based on a common Extended Kalman Filter which
roughly processes data in two phases: a prediction phase that
uses internal model to estimate the position in the future at
a given instant (t), and a correction phase (update) that uses
measured data to update the current estimate of the position.
These two phases take into account the co-variance associated
both to the prediction (model co-variance) and to the measures
(sensors co-variance). The main advantage of this approach
is to integrate different types of sensor thanks to measure
function.

The Kalman filter does not need a periodic activity be-
cause the prediction can be done for different components
running at different periods and the sensors provide data
in an asynchronous way. Thus, it is more convenient to
implement the Kalman filter as a resource such that predict
and update functions are respectively ReadService and
WriteService associated to ReadPort and WritePort
of components. Listing 7 details the interface of this resource.
Update services are specific to a type of data produced by a
sensor, e.g., IMU, GNSS (pose), Odometer (twist). Predict
services can be called to provide estimate at a given time or
implicitly at the current time.

This implementation provides a generic Kalman filter that
can be adapted to different configuration of sensors when
instantiating the architecture.

5.4 Reconfiguration capabilities
This architecture provides some possibilities of reconfigura-
tion. The first available reconfiguration consists in switching
the core of the Control component. This component has
two Core’s implementations, as mentioned in Sec. 5.1.1: an
implementation more suited to cluttered environments, and an
implementation more suited to open environments with more
distant goals, typically in outdoor settings. The reconfiguration
could be triggered by a supervision component that would
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Listing 7: EKF Resource
1

2 s t r u c t EkfCore : p u b l i c Core<E k f S h e l l>
3 {
4 bool c o n f i g u r e h o o k ( ) o v e r r i d e ;
5 void c l eanup hook ( ) o v e r r i d e ;
6

7 void upda te imu ( Imu m) ;
8 void u p d a t e p o s e ( Pose m) ;
9 void u p d a t e t w i s t ( Twis t m) ;

10 M o t i o n S t a t e p r e d i c t ( ) ;
11 M o t i o n S t a t e p r e d i c t a t ( double t ) ;
12 } ;
13

14 s t r u c t E k f I n t e r f a c e : p u b l i c I n t e r f a c e <E k f S h e l l , EkfCore>
15 {
16 W r i t e S e r v i c e<Imu> & upda te imu =
17 m k w r i t e s e r v i c e<Imu>(” upda te imu ” ,
18 &EkfCore : : upda te imu ) ;
19

20 W r i t e S e r v i c e<Pose> & u p d a t e p o s e =
21 m k w r i t e s e r v i c e<Pose>(” u p d a t e p o s e ” ,
22 &EkfCore : : u p d a t e p o s e ) ;
23

24 W r i t e S e r v i c e<Twist> & u p d a t e t w i s t =
25 m k w r i t e s e r v i c e<Twist >(” u p d a t e t w i s t ” ,
26 &EkfCore : : u p d a t e t w i s t ) ;
27

28 ReadServ ice<M o t i o n S t a t e> & p r e d i c t =
29 m k r e a d s e r v i c e<M o t i o n S t a t e >(” p r e d i c t ” ,
30 &EkfCore : : p r e d i c t ) ;
31

32 C a l l S e r v i c e<double , M o t i o n S t a t e> &p r e d i c t a t =
33 m k c a l l s e r v i c e<M o t i o n S t a t e , double>(” p r e d i c t a t ” ,
34 &EkfCore : : p r e d i c t a t ) ;
35 } ;

switch the Control core based on the area where the robot
is currently evolving.

The second available reconfiguration consists in disconnect-
ing the GnssDriver component and the Localization
resource. This may be useful for instance when the GNSS
data becomes unreliable, which could be monitored by using
the number of available GNSS satellites, or the dispersion of
the GNSS signal. Disconnecting the GNSS data may avoid
the localization filter to integrate unreliable data, which may
disturb the estimation process. Once more, this reconfiguration
will be activated by a supervision component that monitor the
status of the GNSS data, and disconnect the component and
the resource, or unconfigure the gnss_to_utm resource to
cut the data processing.

The management of the different reconfiguration mecha-
nisms will be implemented in a generic supervision module
that will be designed in our future works. For these experi-
mentations, the reconfiguration is triggered manually by the
operator.

6 CONCLUSION

In this paper, we have presented the MAUVE Runtime, a mid-
dleware for designing robotic software architectures. MAUVE
Runtime main focus is to provide real-time guarantees on the
execution. The MAUVE Runtime moreover provides reconfig-
uration mechanisms, such that the real-time execution model

is perfectly specified. We have presented the different elements
of the MAUVE Runtime, that defines software architectures
by connecting components and resources. Components have
a real-time activity defined by a clock-based finite state-
machine, that allows to model complex timed behaviors.
Resources are used to provide data sharing, possibly includ-
ing some processing functions. We have then evaluated the
implementation of the MAUVE Runtime with a benchmark,
compared to ROS and Orocos architectures. This benchmark
has first shown the usefulness of a real-time middleware
to guarantee a real-time behavior, and second that MAUVE
deployment behavior is compliant with its specification. As
far as we know, none of the existing middlewares used in
robotics provides real-time safe reconfiguration mechanisms
as defined and implemented in the MAUVE Runtime.

We finally presented the architecture of a ground robot
performing a navigation task, and we have illustrated how the
several features of the MAUVE Runtime allows to implement
advanced features and behaviors within the architecture. In
this application, the activation of the reconfiguration (and
the monitoring that will trigger this reconfiguration) are not
managed by the runtime itself. Current work consists in
adding in the MAUVE Runtime the concept of architecture
monitors, in order to identify which components will be able
to reconfigure the architecture.

The MAUVE Runtime and associated documentation and
libraries are available at

https://mauve.gitlab.io
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