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Abstract—Nowadays dangerous, repetitive or precision requir-
ing jobs are done by robots like flying drones, industrial assembly
arms or medical assistants. In all these cases, human beings can
interact with the machines, therefore it is essential to guarantee
that every part of the robot’s software and hardware will produce
a safe behavior: both the overall behavior and the local behaviors
of such embedded systems have to be carefully analyzed. The
complexity of embedded systems software architectures increase
with more and more tasks involved; state-machines are applied
to implement more functional capabilities of the tasks; and
the task models used in the analyses gain in complexity. The
analysis techniques have to be adapted in order to face such new
complexities. This paper focuses on the real-time analysis of state-
machine-based software architectures. We propose a method to
analyze the temporal behavior of a component-based architecture
in which the components are described by state-machines. The
method computes an accurate worst-case response time by taking
into account the state-machines of the components. Finally, we
validate our approach with a real real-time robotic case study.

I. INTRODUCTION

Computer-based systems occupy an increasing place in our
everyday or professional life. The increasing capabilities of
the robots imply that more and more tasks are performed
in the presence of humans and even in collaboration with
them. Therefore we need to ensure that these robots will not
damage themselves or their environment and more importantly
they do not hurt any human being in their whole life. Safety
concern has been considered regarding several aspects of
robotic embedded systems such as collision avoidance [1],
safe interaction with human beings [2], fault detection and
tolerance [3] or controller synthesis [4].

In all the existing physical and software safety procedures,
the notion of time is a matter of importance since the temporal
behavior have to be guaranteed. These guarantees are brought
by timing analyses on the real-time software. During the past
decades, the widely known Liu and Layland [5] fixed priority
models, as well as dynamic priority task models such as
Earliest Deadline First (EDF) [6] have been precise enough
for software analysis.

Due to the increasing complexity of the real-time systems,
the analysis methods had to be adapted taking into account
resource partitioning with methods such as Priority Inheritance
Protocol (PIP) [7], Priority Ceiling Protocol (PCP) [8] or
Stack Resource Policy (SRP) [9]. Other improvements needed
to account for task interdependency [10], but also for more
refined elements such as the operating system [11].

In modern systems, the computing needs growth implies
structural modifications in the task concept; moreover, the

new task models require new analysis methods such as the
Digraph real-time task model [12], which has been designed
to extend the expressiveness of the task models by taking into
account the state-machines of the components. With a practical
perspective, [13] uses the digraph real-time task model to
model and analyze Simulink and SCADE programs.

In embedded systems middlewares separate software devel-
opment from operating system, abstracting operating system
specific parameters and functions from user-defined programs.
The most common robotic middlewares are ROS [14] and
Orocos [15]. In the context of this work, we have focused on
the study of the Orocos middleware which is widely used in the
robotic community thanks to its inherent real-time capabilities.

We propose a modeling method of the depicted systems
by precise temporal behavior analysis. The method faces states
machines describing task execution behaviors, and it computes
accurate Worst-Case Response Times (wcrts).

The paper is organized as follows: Section II presents the
state-machine-based architecture concept with the definition
of the tasks and their state-machines. Section III presents our
proposed method, decomposed in two steps: the creation of
execution traces and the computation of the wcrt using these
traces. Section IV shows the efficiency of the analysis and an
intuition of the gain over the classical analysis with relation
to wcrt. Section V presents a robotic case-study on which we
have used this method.

II. STATE-MACHINE-BASED SOFTWARE MODEL

This section of the paper presents our software model.
Many complex software systems are made of a component-
based architectures, and the set of components is mapped on
tasks modeled as state-machines. To increase accuracy, we
have also modeled internal parts of each state of the state-
machines.

A. Component and task description

A component is a software device carrying an elementary
function. The component model is made of two main parts: the
communication interface, and the behavior which is modeled
with a state-machine. The components communicate with each
other by non-blocking data transfer or function call. The non
blocking aspect of the communication implies a temporal
independence between the tasks. The state-machine based
behavior is preferred over a simple task one (without state-
machine), due to its increased overall robustness to failures
and the possibility of a more fine grained representation of the
task behavior.978-1-4673-7929-8/15/$31.00 c© 2015 IEEE



B. Task definition

The components are mapped by the middleware onto tasks
of the host operating system. The behavior of the task is
then defined by the component’s state machine which is run
by the task. In the rest of the paper we make use of both
component and task to denote the same, since a task is always
an instantiation of a component. The activity of a task indicates
its real-time properties such as its period, its deadline and
its priority. The real-time behavior is guaranteed by using a
real-time operating system (i.e. a Xenomai patched Linux)
with a fixed priority scheduler. The period configures the task
execution frequency; the priority is used by the fixed priority
scheduler to schedule the tasks; the deadline corresponds to the
time at which the task must have finished its execution. Finally,
the task has an execution time depending on the hardware
platform and the function it has to exploit. A task τi is referred
to a tuple (Ri, Ti, Pi, Di, state−machinei) such that

Ri : release time

Ti : period

Pi : priority

Di : deadline.

(1)

state −machinei belongs to the task model since it defines
its behavior. The worst-case execution times of the tasks
wceti are computed from the state-machines of the tasks (see
Section III-A), hence they are not part of the task model.

In the rest of the paper the following hypotheses are
assumed.

Hypothesis 1: The deadlines are lesser or equal than the
period: ∀i,Di ≤ Ti

Hypothesis 2: The release time of the tasks is unknown
between their wake-up and their period: ∀i, Ri ∈ [0..Ti]

The wake up of the task is done by the operating system. Since
the execution models of the tasks do not provide the ability
to set or to control their activation times, it is impossible to
know the first release times Ri of the tasks. We then assume
that the release time of each task can take any value between
0 and its period.

C. Task model

In this paper we will focus on the temporal behavior anal-
ysis of tasks, which depends on both the real-time properties
of the tasks activities, and on the internal behavior of the tasks
(functional and timing behavior defined by the state-machine).

A task state-machine is a set S of n states and a set E of
m edges (or transitions), such that:

S = {s1, . . . , sn} and |S| = n (2)
E = {e1, . . . , em} and |E| = m (3)

These state-machines carry all the functions and algorithms of
their host task. The functionality of a task is time consuming
and our model uses the state-machine structure to precisely
compute the worst-case execution times of the tasks.

1) State-machine: Each state si contains up to four parts:
entryi, runi, handlei and exiti.The entryi part contains the
code to be run whenever the state-machine arrives to state
si; the exiti step is run as soon as the state-machine leaves
si; the runi method contains the core of the state, that is
executed at each iteration when the state-machine is in state
si; lastly, the handlei part executes each period the state-
machine stays in the same state, just after executing runi. Two
possible execution cycle per iteration for a task: 1) the state-
machine stays in the same state at the next iteration: it executes
runi and handlei; 2) the state-machine goes from state si to
state sj : it executes runi, exiti and entryj . Regarding the
task’s periodic execution, the state-machine fires a transition
per task period. Moreover the state-machine can fire at most
one transition per iteration. Not all the 4 parts are need for a
state to be defined, but at least runi has to, depending on the
modeled application.

t

iteration 1 iteration 2

Si Si Sj

Runi Handlei Runi Exiti Entryj

Fig. 1. State-machine transition protocol

Fig. 1 shows two consecutive iterations of the execution
of a task. In this task all the entryi, runi, handlei and exiti
parts are defined. In the first iteration, the task stays in state
si, and the runi and handlei methods are executed. In the
second iteration, the task goes from state si to state sj , and
the runi, exiti and entryj methods are executed.

2) Execution times: In order to obtain the execution times
of the different elements of the state-machines (entry, run,
handle and exit for each state), we have used two techniques:
static analysis [16] on the compiled source code, and prob-
abilistic analysis [17] on execution logs. In both cases, we
extracted the worst case execution times of the state-machines
in order to compute the wcrt and analyze the deadline respect
of the tasks.

III. ANALYSIS

To ensure that a task system is schedulable, the response
times of the system’s tasks have to be computed. In our
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Fig. 2. Process of the task model analysis

modeling and analysis framework we make use the component
model with a state-machine, while the wcet of the state-
machine’s parts are computed to create a Periodic State-
Machine (PSM), Section III-A. A PSM is basically a state



machine that carries its actions on its transitions. A method to
extract a request bound function rbf per instance of the PSM
is proposed in Section III-B. A state-machine can be executed
in many different sequences and we produce a request bound
function per possible sequence of the PSM. Our method uses
all the request bound functions of a component to compute an
upper bound that not necessarily represent a possible execution
of the PSM but it is safely defined, Section III-C. This upper
request bound function is used to compute the wcrt of the
components, Section III-D. For that, we have modified a fixed
point formula to use the upper request bound functions in place
of the task’s execution time. Lastly, the wcrt is injected in the
component model to compare it with its deadline and to check
the component schedulability. This process is shown in Fig. 2.

A. Periodic state-machine

The tasks are deployed following the specification of the
software, which implies that the tasks have a periodic activity.
In order to analyze the state-machine’s behavior, we have
to model it as a PSM. This way, we can abstract away the
implementation specificities such as the entry, run, handle and
exit parts of the state-machine. We also abstract into the PSM’s
transitions the delays induced by the middleware’s interactions.
The periodic aspect of the state-machine states that at most one
transition has to be fired per task period.

The PSM model specifies that all the time spent in the
periodic state-machine is taken by the transitions for two
reasons: a) The four methods (entry, run, handle, exit) of the
state-machine states contain code that takes time to execute.
These four methods are carried by the transitions between
states and no executable code is present in the states. b) The
operating system on which are mapped the tasks has not been
taken into account in the model. We assume that it does not
have any effect on the temporal behavior.

We define a PSM as a set of states S, which are the same
states than the original state-machine (see Equation (2)), a set
of transitions Σ, along with a timing function δ, defined by:

Σ = E ∪ {s −→ s | s ∈ S} (4)

∀σ ∈ Σ, si
σ−→ sj , δ(σ) ={

si 6= sj : wcet(runi) + wcet(exiti) + wcet(entryj)

si = sj : wcet(runi) + wcet(handlei)
(5)

The set of transitions Σ contains all the original transitions
of the state-machine (E) plus all the loops over states of S.
The timing function δ associates to each PSM transition the
Worst Case Execution Time (wcet) of the methods involved
in this transition (see Fig. 1 for a description of the transition
protocol). According to the definition of PSM, the following
property holds:

Property 1: The periodic state-machine fires a transition at
every execution period.

This transition may be a loop over the same state, or a
transition from a state to another. The second assumption is
on the strongly connection of the state machine:

Property 2: The periodic state-machine is strongly con-
nected: every state can be reached from any state through a

sequence of transitions.

∀si, sj ∈ S, ∃σ1 . . . σn ∈ Σ | si
σ1−→ . . .

σn−−→ sj (6)

This assumption is useful, because it avoids considering
that some dead states exist in the task behavior, and it is a
needed assumption for the reasoning on the wcrt computation
(see Section III-D). Moreover, this assumption is in a sense
a good practice that we should enforce when developing the
tasks: it allows to be able to put the task again in its initial
state at execution in the case where a faulty behavior occurs.
In practice, it is possible to make a state-machine strongly
connected by adding transitions from each state to the initial
state of the state-machine.

B. Execution traces

In this section, we explain how an execution trace is
constructed from the states and the transitions of a state-
machine. In order to be used in the analysis, the traces have to
be ordered so we use the request bound function of the traces
to get a partial order between traces.

1) Traces: To access the input and output states of a
transition, we define the following notations:

from (σ) ∈ S
to (σ) ∈ S

∣∣∣∣ from (σ)
σ−→ to (σ) (7)

Reasoning on the executions of a state-machine so we
define a trace T as an ordered sequence of transitions as
indicated in the following expression: T = 〈σ1, . . . , σN 〉

In order to use traces on our computations, we have to
know the amount of transitions contained in a trace. The length
of a trace is defined as the amount of transitions contained in
the trace: |T | = |〈σ1, . . . , σN 〉| = N

Since this sequence is ordered, we can define the operator
T [k] to access to the kth transition of the trace: T [k] =
〈σ1, . . . , σk, . . . , σN 〉 [k] = σk

A trace is then constructed as a concatenation of transitions.
To add the transition σM to the trace T , we define the operator
〈T , σM 〉: 〈T , σM 〉 = 〈σ1, . . . σN , σM 〉

In order to simplify the following equations, other con-
catenation operators are defined such as 〈σi, T 〉 to add the
transition σi at the beginning of the trace T or 〈σi, T , σM 〉 to
add transitions at the beginning and at the end of the trace:

〈σi, T 〉 = 〈σi, σ1, . . . σN 〉
〈σi, T , σM 〉 = 〈σi, σ1, . . . σN , σM 〉

(8)

2) Partial pre-order relation on traces: Since we want to
use the traces to compute the worst case execution time of the
tasks traces, we have to define the conditions for which a trace
is worst than another one. For that we introduce a partial order
relation between traces with the operator ≤.

Looking for a worst trace regarding the execution times,
we use the request bound function (rbf) of the traces [18]. The
request bound function is the maximum processor request by
task over a time interval. The tasks are executed periodically
then the request bound function is a piecewise-constant and



increasing function. The step height relies on the execution
times of transitions and thus the wcet of the task methods.
The request bound function of a trace T at time t is noted
rbf (T , t):

rbf (T , t) =

|T |∑
i=1

⌊
t

T

⌋
δ (T [i]). (9)

We then define the relation ≤ on traces by comparing the rbf
of the traces:

T (t) ≤ T ′ (t) iff∀t, rbf (T , t) ≤ rbf (T ′, t) (10)

The ≤ relation is clearly reflexive (∀T ,∀t, T (t) ≤ T (t))
and transitive (∀(T , T ′, T ′′),∀t, T (t) ≤ T ′ (t) ∧ T ′ (t) ≤
T ′′ (t) ⇒ T (t) ≤ T ′′ (t)). It then defines a partial pre-order
relation on the set of traces.

3) Feasible traces: A trace is feasible if every pair of
consecutive transitions of the trace is feasible. Feasibility
implies that the arrival state of the first transition is the starting
state of the second one. The following equation defines a
feasible trace:

φ(〈σ1, σ2〉) ≡ to(σ1) = from(σ2)

φ(〈T , σ〉) ≡ φ(T ) ∧ to(T [|T |]) = from(σ)
(11)

C. Upper bound of the traces

In order to compute an upper bound of a trace used to
obtain the worst-case response time of a task, we have to
compute every feasible traces of this task. We produce a trace
maximizing the feasible traces regarding the request bound
function.

1) Construction of a trace: An execution trace is built
incrementally: it starts from any state and every feasible
transition is fired. This process is repeated for all the possible
transitions and executed recursively until the trace reaches a
specific length defined in Equation (17) (see Section III-D1).

In order to define the following equations, we have to
define the next operator representing the set of traces that
follows a given trace. The next operator is defined as:

next (T ) = {〈T , σ〉 | σ ∈ Σ ∧ to (T ) = from (σ)} (12)

next(T ) is the set of all feasible traces beginning by T and
having one more transition. We also define the operator to to
get the last state reached by a trace: to (T ) = to (T [|T |])

2) Construction of a trace set U: The trace set computation
is an iterative process. At the first iteration, the trace set
contains all the traces with one transition of the analyzed task.
Then the reachable transitions are added. Consequently all the
traces of the trace set have the same transition count at each
iteration. The process is repeated until the traces of the trace
set reach the time scope defined in Section III-D1.

This iterative process is defined by the following recursive
equation:

U1 = {〈σ〉 | σ ∈ Σ}
Un+1 =

⋃
T ∈Un

next (T )

= {T | T = 〈T ′, σ〉 ∧ σ ∈ Σ ∧ T ′ ∈ Un

∧ 〈T ′, σ〉 ∈ next (T ′)}

(13)

Since all the traces are built using the next operator that
adds only the feasible traces, all the traces from the trace set
are feasible by construction.

3) Optimization of the trace set construction: The compu-
tation of the wcrt of the tasks relies on the computation of
an upper bound of all the feasible traces of a task. Therefore,
all the feasible traces of the task are not interesting, as we
only need to reason on the maximal feasible traces (according
to relation (10)). From Equation (13), two traces arriving at
the same state will be extended the same way (with the next
operator). Therefore if two traces terminate with the same state
and one trace is smaller than the other (according to the ≤
relation) then all the feasible traces following this particular
trace will be smaller than any of the feasible traces following
the greater trace. It is then possible to upgrade the trace set
computation equation by deleting the traces leading to smaller
traces. Equation (13) is replaced by the following optimized
equation:

U1 = {〈σ〉 | σ ∈ Σ}
Un+1 = {T | T = 〈T ′, σ〉 ∧ ∃σ ∈ Σ ∧ ∃T ′ ∈ Un

∧ 〈T ′, σ〉 ∈ next (T ′) ∧ ∀T ′′ ∈ Un

∧ ∀σ′ ∈ Σ ∧ 〈T ′′, σ′〉 ∈ next (T ′)
∧to (T ′) = to (T ′′) ∧ T ′ ≥ T ′′}

(14)

4) The upper bound trace is not the worst trace: The trace
set constructed in the previous section represent all the possible
executions of the task’s state-machine. From these trace sets,
we can extract the upper bound trace T +. T + is an upper
bound (according to (10)) of all the feasible traces of the task.

T + : ∀n,∀T ∈ Un | T + ≥ T (15)

It is important to notice that the worst trace is defined as
a trace but is not necessarily a feasible trace.

Example 1: In order to illustrate the computation of T +,
we take an example with a state-machine, i.e. PSM, with two
states (Si and S2) and four transitions (Fig. 3). The two states
S1 and S2 are connected by the two transitions σ3 and σ4. The
transitions σ1 and σ2 loops on S1 and on S2 respectively. The
transition times (within brackets) are arbitrary values for this
example. The first iteration U1 contains only the transitions of

S1 S2σ1(5) σ2(2)
σ3(1)

σ4(10)

Fig. 3. A simplified periodic state-machine

the state-machine for which the output state has the highest
rbf value:

U1 = {〈σ2〉 , 〈σ4〉} . (16)

The next iterations are built by adding to the traces the
transitions leading to each of the existing states with the
highest accumulated time. This process is shown in Fig. 4
where the transitions from S1 and S2 in U1 are tested. The
resulting states are both S1 and S2, but as different instances.
The transition σ4 is taken, instead of σ1, because it induces
a higher cost. The same happens for σ2 and σ3. For U2, the
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process is similar: σ1 is added to the trace since the resulting
trace cost δ (σ4) + δ (σ1) is higher than δ (σ2) + δ (σ4).

This technique allows us to build a much smaller trace
set than with the naive method (13). Even though it does not
contain all the possible traces, it contains the necessary traces
to build the upper bound trace. Fig. 5 presents the two traces
from the trace set U3. The two traces interleaves themselves
and the upper bound trace is the upper bound of the graph.
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Fig. 5. Un values on three iterations using the optimized equation

D. wcrt computation from the upper bound trace

We have previously proposed a method to compute an
approximation of the request function of a task by the compu-
tation of an upper bound trace of length n. In order to complete
our analysis and compute the worst-case response time of every
task we have to determine the maximum useful length of the
traces. Then we have to adapt the computation of the wcrt to
consider the upper bound trace.

1) Maximum trace length: Hypothesis 2 indicates that the
release times of the tasks are unknown and Property 1 says that
a task’s state-machine fires a transition every period. Property 2
indicates that the state-machines are strongly connected. Fur-
thermore, any task can stay in the same state meaning that for
every task, it is possible to be in any state in the future. For
every task it is possible to reach any state (because the state
machine is strongly connected) and to remain in this state.
Moreover, not knowing the exact release times it is possible
that all the tasks can wake up at the same time. For every task
the upper bound trace is greater than all of the task’s execution
traces. It is then possible to find a worst case critical instant
when all the tasks start their execution at the same time with
the first transition of their upper bound trace.

Therefore we can say that, for every task, the first deadline
is the most time restrictive, response time analysis [19], and we
can restrict the study period to the maximum of the deadlines.
We define

D = max
i
Di, (17)

and we compute the upper bound trace of each task i by

computing its trace sets until U
⌈

D
Ti

⌉
.

2) Worst-case response time: In order to compute the wcrt,
we adapted the usual recursive procedure proposed by [5].
Instead of using the task’s execution time, we use the upper
bound trace’s values: at each iteration of the recursive proce-
dure, we use the the next iteration of the upper bound trace.

Defining T +(t) as the request function of the upper bound
trace at time t, it is possible to compute the wcrt of the ith
task by initializing its value at its first instance’s execution
time. The wcrt is then recursively incremented with the higher
priority instance’s execution time.

R0
i = T +

i (0)

Rn+1
i =

∑
j≤hp(i)

T +
j (Rni ) + T +

i (0) (18)

with hp(i) the higher priority task’s instance. Two conditions
stop this incremental loop: a) whenever two consecutive iter-
ations have the same Ri value, b) whenever Rn+1

i reaches
the task’s deadline. In the latter the software (i.e. tasks) is not
schedulable. On the other hand, if all the wcrt and lesser than
the deadlines (i.e., ∀i, Ri ≤ Di), the tasks are schedulable.

IV. PERFORMANCE OF THE ANALYSIS

So far we have proposed a new wcrt computation method
for real-time systems by using tasks modeled with state-
machines. It is then time to evaluate the computation overhead
by taking into account the state-machines of the tasks into the
analysis. We intend to prove that such overhead remains low
and does not impact the analysis computation time. We also
give an intuition of the precision gain provided by this analysis.

A. Complexity of the proposed method

In this section we compare the complexity overhead of the
proposed method with respect to the usual task’s execution
time based analysis. The computation cost is computed in
terms of operations per each step.

1) State-machine to PSM: For each state-machine, the
PSM construction cost is linear: the PSM is made of the same
amount of states and transitions as its corresponding state-
machine.

2) Trace computation from the PSM: For each PSMi of
the task i, the amount of computed traces depends on: a) the
study period of the system D; b) the amount of states of the
PSM |S| and c) the connectivity of the PSM, representing the
amount of possible transition per state C For each PSMi the
amount of traces is bounded by the amount of possible path
of length

⌈
D
Ti

⌉
in the graph represented by the PSM. The cost

for the trace computation from the PSM is then: |S| × C
⌈

D
Ti

⌉
.

3) Upper bound of the traces: The computation cost of the
upper bound depends on the amount of traces and the length
of the traces. For each task i, the complexity is:

|S| × C
⌈

D
Ti

⌉
×
⌈
D

Ti

⌉
(19)



4) Worst case response time: This part of the computa-
tion does not induce a computational overhead because it is
identical to the classical method.

From a practical point of view, we found out that the
computation time of the PSM based analysis is practically
instantaneous:

• The overall dimension of the elements is low. The
number of states of the PSM is identical to the
states of the state-machine given by its developer,
which is usually low and often below ten states. The
connectivity is bounded by the number of states and
is usually lower. The number of iterations depends on
the heterogeneity of the periods and of the deadlines.

• The inclusion property 2 allows to reduce the amount
of traces to take into account in the analysis.

B. Gain on the request bound function

In terms request bound function, the precision gain from
our technique quantifies the schedulability improvements.

1) Practical observations: The method presented in this
paper studies the schedulability of a task set by computing the
wcrt of each task, scheduled by a fixed priority scheduler. The
wcrt computation of each task τi depends on the higher priority
tasks and more particularly of the request bound function of all
the higher priority tasks. The precision of our method comes
from a precise computation of the request bound functions of
the higher priority tasks using their internal state-machine.

In a task model without state-machine, the “worst” tran-
sition is executed at every period. In out task model, this
“worst” transition is executed at the first period and then the
other transitions are taken into account. The precision further
increases with the complexity of the state-machine and with
its execution times variability. It means that the more the
upper bound trace is computed for a long time, the better the
precision is. We have shown that, under our hypotheses, only
the first deadline matters for the schedulability analysis. As
a consequence, the precision of our technique also increases
with the deadline of the component we are computing the wcrt
for.

These two observations are interesting from a practical
point of view, because they correspond to real-time systems
best practices. For systems with deadline on request tasks, we
often set the priorities of the tasks depending on their period
(with a Rate Monotonic scheduler). In the case the deadline
on the tasks are lesser than their period, we prefer priorities
defined from their deadlines (using a Deadline Monotonic
scheduler). By setting the priorities using these good practices,
the request bound function of the higher priority tasks are
computed on a longer timespan and thus increases the precision
gain.

2) Indicator: The precision gain of our method is quite
easy to compute with relation to the purely task oriented
technique that do not take into account the state-machines.
For each task τi with a deadline Di, the precision gain is:

Di∫
0

rbf∗i − T +
i (20)

with rbf∗i the request bound function of the considered task.

This process is shown in Fig. 6: the worst case appears
at the first step when the transition σ4 is fired, equaling the
request bound function value. However, in the second step,
the upper bound trace fires the σ1 transition, which is not the
most time consuming transition of the state-machine but is still
an upper bound of the task’s execution time. Thanks to the
precision provided by the state-machine, we have gained five
time units at the second step. At the third step, the difference
between the two traces is further increased providing an even
lower upper bound of the task’s overall execution time.

execution time

t5
10
15
20
25
30

0 T 2T 3T

rbf*

“trace worst”

σ4

σ1

σ4

Fig. 6. Comparison between Un values and the “classical” request bound
function

V. EXPERIMENTS

We have applied our framework to trace analysis and wcrt
computation on a real robotic use-case.

A. Robotic platform architecture

The Pioneer 3-DX is a wheeled robot equipped with an
internal computer as a controller interface. Its stock capabilities
allow it to move around through its wheels speed controlled
and avoid some obstacles using its sonar range finders. Its
engines are sufficiently powerful to move around outdoors on
reasonably rough terrains and its small size allows it to find its
way into corridors. In order to increase its capabilities, we have
plugged a Hokuyo UTM-30LX1 laser scanning range finder
and an Asus Xtion Pro Live2 depth and colour camera.

A traditional laptop computer with an Intel i5 architecture
is used for our experiments. This embedded computer run
Linux kernel patched with Xenomai, which allows the user
to create hard real-time tasks on top of a non-real-time kernel.
Xenomai receives all the system interrupts and checks if it
has to handle them. If not, it passes the interrupts to the Linux
kernel. A fixed priority scheduler is built in Xenomai to achieve
true real-time performances.

B. Component architecture

We have developed a Navigation, Guidance and Control
component-based architecture meant to be run on mobile
robots [20]. This architecture is made of three main compo-
nents (Navigation, Guidance and Control) designed to compute
a path to follow for the robot, to avoid obstacles, and to drive
the robot’s engines (see Fig. 7). Other components have to
be connected in order to provide sensor information, robot’s
status, or high level planners. Moreover, we have connected a

1http://www.hokuyo-aut.jp/02sensor/07scanner/utm 30lx.html
2http://www.asus.com/Multimedia/Xtion PRO LIVE/
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Fig. 7. Simplified component-based architecture running on the robot

Simultaneous Localization And Tracking (SLAM) component
for the robot to build a map of its environment via a laser
range-finder and the robot’s odometry. We also have embedded
an image detection and tracking component to a path planning
task in order to have the robot go where the detected object
is. The Detection and tracking component detects and tracks
an object on a picture stream. In this particular example,
without loosing generality only the Detection and tracking
component is modeled with a state-machine, while the other
tasks associated to components are modelled as simple tasks.

C. Illustration of the upper bound trace calculation for the
detection and tracking component

The state-machine of the detection and tracking component
(see Fig. 8) has four states: the Initialize and the Cleanup are
respectively creating and cleaning the memory needed by the
component; the Detect state, through which the component
has to find an object on an image stream; the Track state
is for tracking the position of the detected object on the
picture stream. The Track state also provides the position of the
tracked object relatively to the camera’s position. As usual on
image processing programs, the object detection costs more
computation time than the tracking, because it has to scan
the whole image for finding the object. When the object is
detected, the tracking needs only to check around the detected
position to follow its movements. In this state-machine, we
have represented the worst execution times of the state’s run,
entry and exit parts.

Cleanup
run: clean (0)

Track
run: track (5)

Initialize
run: init (0)

Detect
run: detect (10)

start(20)
exit

reinit(2)
exit stop(20)

entry

detected(0)
entry

lost(0)
exit

Fig. 8. State-machine of the Detection and tracking component. Transition
duration correspond to the sum of the exit of the previous state and the entry
of the next state. worst-case execution times are expressed in ms

The corresponding PSM of the Detection and tracking is
shown on Fig. 9. All the functions carried by the states are
moved to the state-machine’s transitions and the execution
times of the transitions are adapted accordingly. For example,
the transition from Detect to Cleanup carries the execution
times of the detect (run: detect = 10ms) and stop functions
(20ms), i.e. 30ms. The computation of the traces for this
component and the resulting upper bound trace are illustrated
on Fig. 10 where the rbf of some feasible traces are drawn
so as the upper bounding rbf .

Cleanup Track

Initialize Detect
start(20)

reinit(2)
stop(30)

detected(10)
lost(5)

init(0) detect(10)

clean(0) track(5)

Fig. 9. PSM for the detection and tracking component
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Fig. 10. Some execution traces

Table I presents some possible traces along with the upper
bound trace and the classical wcet computation (i.e., taking
the max of all the transitions at each step). We can see that
our approach produces an important gain with respect to the
classical wcet computation, then leading to a less pessimistic,
thus more precise response times for the tasks. For the first

TABLE I. rbf VALUES OF SOME TRACES OF THE DETECTION AND
TRACKING COMPONENT, ALONG WITH THE UPPER BOUND TRACE AND THE

WCET VALUES.

iteration 1 2 3 4 5
track* 5 10 15 20 25
detect* 10 20 30 40 50
start, . . . 20 30 40 45 50
(start, stop, reinit)* 20 50 52 72 102
(stop, reinit, start)* 30 32 52 82 84
(reinit, start, stop)* 2 22 52 54 74
...
upper bound trace 30 50 52 82 102
cumulative wcet 30 60 90 120 150
gain (in %) 0 17 42 32 32

iteration our approach provides no gain over the classical
method. The next iterations show the gain can go up to 42%
and stabilises to 32% for this state-machine.



D. Architecture schedulability

In order to evaluate the schedulability of our architecture,
we compute the wcrt of all the components. We first computed
the schedulability using the classical approach, where each
component has a unique wcet. Then we applied our method,
that consists in computing the upper bound trace of each
component, and then applying the modified version of the wcrt
computation , Equation (18).

Table II shows the real-time characteristics of the several
components of the architecture, and the results of the schedu-
lability analysis. For each component there is, from left to
right: its priority (the higher the value, the higher the priority),
its wcet (using the classical task-based reasoning), its wcrt
(limited to the component’s deadline ; named wcrt*) using
the previous wcet, its wcrt based on the upper bound trace
computation (named wcrt+), and its period. All the task’s
deadlines are equal to their period.

TABLE II. REAL-TIME CHARACTERISTICS OF THE ARCHITECTURE’S
COMPONENTS

component prio. wcet wcrt* wcrt+ period
Robot 8 16 16 16 100
Control 7 3 19 19 100
Guidance 6 12 31 31 100
Laser 5 22 53 53 150
SLAM 4 30 83 83 150
Camera 3 10 93 93 250
Det.&Track. 2 30 237 237 250
Navigation 1 30 307 (338) 297 300

The classical analysis cannot prove that this architecture
is schedulable because the Navigation component hits its
deadline: the worst-case response time iterative computation
has been stopped when its value (307ms) has hit the deadline
(300ms). If we do not stop the iterative process, for this precise
task set, it eventually arrives at a fixed point of 338ms. With
the method we proposed in this paper, we computed a less
pessimistic but still not optimistic wcrt for the components:
the Navigation component has a wcrt+ of 297ms which is
lesser than the deadline. As all the wcrt+ are lesser than the
tasks periods so the new technique proves the architecture is
schedulable, reducing the pessimism from classical response
time analysis techniques.

VI. CONCLUSIONS

In this paper, we have presented an innovative method
for analyzing state-machine-based software architectures. It
computes more accurate and realistic execution times than
the purely task oriented methods by making use of the task’s
state-machines. The presented method first models the state-
machines as Periodic State-Machines. From the PSMs, exe-
cution traces are built and a maximum bound, namely the
upper bound trace, is computed for each task. Then a new fix-
point formula has been defined to computate the worst-case
response times from the upper bound trace of each task. The
precision gain brought by this technique is even better with
complex systems with complex and uneven state-machines.
The experiments made on an embedded computer for a mobile
robot running a Navigation, Guidance and Control architecture
on a real-time Linux kernel showed that our approach allows

to conclude on the schedulability of the architecture, while the
classical approach concluded otherwise.

For future developments, we plan to investigate several
possible enhancements. We want to take into account the
middleware: for now, we have considered that its protocols,
such as the communication interface, takes sufficiently few
time to not be considered in the computation. A second possi-
bility is to adapt our technique for multicore or multiprocessor
devices since they are common nowadays. Since our method
computes the execution times of the tasks per iteration, we
want to adapt other scheduling analyses such as EDF to use the
PSMs. We also plan to investigate soft real-time applications
since we can use probabilistic execution times to compute
the execution traces and thus a probabilistic schedulability
analysis. Finally, we also want to provide tools to automate
the design, the development and the analysis of component-
based architectures using the Mauve DSL [21].
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